Search
lxdream.org :: lxdream/src/aica/audio.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/aica/audio.c
changeset 934:3acd3b3ee6d1
prev779:a60e47313e7b
next989:7baf5ecd8e98
author nkeynes
date Fri Dec 26 14:25:23 2008 +0000 (12 years ago)
branchlxdream-mem
permissions -rw-r--r--
last change Change RAM regions to use static arrays rather than mmap regions, for a 2-3% performance gain.
General mem cleanups, including some save state fixes that break states again.
file annotate diff log raw
nkeynes@66
     1
/**
nkeynes@561
     2
 * $Id$
nkeynes@66
     3
 * 
nkeynes@66
     4
 * Audio mixer core. Combines all the active streams into a single sound
nkeynes@66
     5
 * buffer for output. 
nkeynes@66
     6
 *
nkeynes@66
     7
 * Copyright (c) 2005 Nathan Keynes.
nkeynes@66
     8
 *
nkeynes@66
     9
 * This program is free software; you can redistribute it and/or modify
nkeynes@66
    10
 * it under the terms of the GNU General Public License as published by
nkeynes@66
    11
 * the Free Software Foundation; either version 2 of the License, or
nkeynes@66
    12
 * (at your option) any later version.
nkeynes@66
    13
 *
nkeynes@66
    14
 * This program is distributed in the hope that it will be useful,
nkeynes@66
    15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
nkeynes@66
    16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
nkeynes@66
    17
 * GNU General Public License for more details.
nkeynes@66
    18
 */
nkeynes@66
    19
nkeynes@66
    20
#include "aica/aica.h"
nkeynes@66
    21
#include "aica/audio.h"
nkeynes@700
    22
#include <glib/gmem.h>
nkeynes@66
    23
#include "dream.h"
nkeynes@66
    24
#include <assert.h>
nkeynes@66
    25
#include <string.h>
nkeynes@66
    26
nkeynes@697
    27
nkeynes@697
    28
extern struct audio_driver audio_null_driver;
nkeynes@697
    29
extern struct audio_driver audio_osx_driver;
nkeynes@697
    30
extern struct audio_driver audio_pulse_driver;
nkeynes@697
    31
extern struct audio_driver audio_esd_driver;
nkeynes@697
    32
extern struct audio_driver audio_alsa_driver;
nkeynes@697
    33
nkeynes@697
    34
audio_driver_t audio_driver_list[] = {
nkeynes@697
    35
#ifdef HAVE_CORE_AUDIO
nkeynes@736
    36
        &audio_osx_driver,
nkeynes@697
    37
#endif
nkeynes@657
    38
#ifdef HAVE_PULSE
nkeynes@736
    39
        &audio_pulse_driver,
nkeynes@657
    40
#endif
nkeynes@531
    41
#ifdef HAVE_ESOUND
nkeynes@736
    42
        &audio_esd_driver,
nkeynes@531
    43
#endif
bhaal22@643
    44
#ifdef HAVE_ALSA
nkeynes@736
    45
        &audio_alsa_driver,
bhaal22@643
    46
#endif
nkeynes@736
    47
        &audio_null_driver,
nkeynes@736
    48
        NULL };
nkeynes@531
    49
nkeynes@66
    50
#define NUM_BUFFERS 3
nkeynes@700
    51
#define MS_PER_BUFFER 100
nkeynes@66
    52
nkeynes@66
    53
#define BUFFER_EMPTY   0
nkeynes@66
    54
#define BUFFER_WRITING 1
nkeynes@66
    55
#define BUFFER_FULL    2
nkeynes@66
    56
nkeynes@66
    57
struct audio_state {
nkeynes@66
    58
    audio_buffer_t output_buffers[NUM_BUFFERS];
nkeynes@66
    59
    int write_buffer;
nkeynes@66
    60
    int read_buffer;
nkeynes@66
    61
    uint32_t output_format;
nkeynes@66
    62
    uint32_t output_rate;
nkeynes@66
    63
    uint32_t output_sample_size;
nkeynes@465
    64
    struct audio_channel channels[AUDIO_CHANNEL_COUNT];
nkeynes@66
    65
} audio;
nkeynes@66
    66
nkeynes@66
    67
audio_driver_t audio_driver = NULL;
nkeynes@66
    68
nkeynes@66
    69
#define NEXT_BUFFER() ((audio.write_buffer == NUM_BUFFERS-1) ? 0 : audio.write_buffer+1)
nkeynes@66
    70
nkeynes@66
    71
/**
nkeynes@465
    72
 * Preserve audio channel state only - don't bother saving the buffers
nkeynes@465
    73
 */
nkeynes@465
    74
void audio_save_state( FILE *f )
nkeynes@465
    75
{
nkeynes@465
    76
    fwrite( &audio.channels[0], sizeof(struct audio_channel), AUDIO_CHANNEL_COUNT, f );
nkeynes@465
    77
}
nkeynes@465
    78
nkeynes@465
    79
int audio_load_state( FILE *f )
nkeynes@465
    80
{
nkeynes@465
    81
    int read = fread( &audio.channels[0], sizeof(struct audio_channel), AUDIO_CHANNEL_COUNT, f );
nkeynes@465
    82
    return (read == AUDIO_CHANNEL_COUNT ? 0 : -1 );
nkeynes@465
    83
}
nkeynes@465
    84
nkeynes@531
    85
audio_driver_t get_audio_driver_by_name( const char *name )
nkeynes@531
    86
{
nkeynes@531
    87
    int i;
nkeynes@531
    88
    if( name == NULL ) {
nkeynes@697
    89
        return audio_driver_list[0];
nkeynes@531
    90
    }
nkeynes@531
    91
    for( i=0; audio_driver_list[i] != NULL; i++ ) {
nkeynes@697
    92
        if( strcasecmp( audio_driver_list[i]->name, name ) == 0 ) {
nkeynes@697
    93
            return audio_driver_list[i];
nkeynes@697
    94
        }
nkeynes@531
    95
    }
nkeynes@531
    96
nkeynes@531
    97
    return NULL;
nkeynes@531
    98
}
nkeynes@531
    99
nkeynes@700
   100
void print_audio_drivers( FILE * out )
nkeynes@700
   101
{
nkeynes@700
   102
    int i;
nkeynes@700
   103
    fprintf( out, "Available audio drivers:\n" );
nkeynes@700
   104
    for( i=0; audio_driver_list[i] != NULL; i++ ) {
nkeynes@700
   105
        fprintf( out, "  %-8s %s\n", audio_driver_list[i]->name,
nkeynes@736
   106
                gettext(audio_driver_list[i]->description) );
nkeynes@700
   107
    }
nkeynes@700
   108
}
nkeynes@700
   109
nkeynes@697
   110
audio_driver_t audio_init_driver( const char *preferred_driver )
nkeynes@697
   111
{
nkeynes@697
   112
    audio_driver_t audio_driver = get_audio_driver_by_name(preferred_driver);
nkeynes@697
   113
    if( audio_driver == NULL ) {
nkeynes@697
   114
        ERROR( "Audio driver '%s' not found, aborting.", preferred_driver );
nkeynes@697
   115
        exit(2);
nkeynes@697
   116
    } else if( audio_set_driver( audio_driver ) == FALSE ) {
nkeynes@779
   117
        int i;
nkeynes@779
   118
        for( i=0; audio_driver_list[i] != NULL; i++ ) {
nkeynes@779
   119
            if( audio_driver_list[i] != audio_driver &&
nkeynes@779
   120
                audio_set_driver( audio_driver_list[i] ) ) {
nkeynes@779
   121
                ERROR( "Failed to initialize audio driver %s, falling back to %s", 
nkeynes@779
   122
                       audio_driver->name, audio_driver_list[i]->name );
nkeynes@779
   123
                return audio_driver_list[i];
nkeynes@779
   124
            }
nkeynes@779
   125
        }
nkeynes@779
   126
        ERROR( "Unable to intialize any audio driver, aborting." );
nkeynes@779
   127
        exit(2);
nkeynes@759
   128
    }
nkeynes@759
   129
    return audio_driver;
nkeynes@697
   130
}
nkeynes@697
   131
nkeynes@465
   132
/**
nkeynes@66
   133
 * Set the output driver, sample rate and format. Also initializes the 
nkeynes@66
   134
 * output buffers, flushing any current data and reallocating as 
nkeynes@66
   135
 * necessary.
nkeynes@66
   136
 */
nkeynes@697
   137
gboolean audio_set_driver( audio_driver_t driver )
nkeynes@66
   138
{
nkeynes@66
   139
    uint32_t bytes_per_sample = 1;
nkeynes@66
   140
    uint32_t samples_per_buffer;
nkeynes@66
   141
    int i;
nkeynes@66
   142
nkeynes@111
   143
    if( audio_driver == NULL || driver != NULL ) {
nkeynes@697
   144
        if( driver == NULL  )
nkeynes@697
   145
            driver = &audio_null_driver;
nkeynes@697
   146
        if( driver != audio_driver ) {	
nkeynes@697
   147
            if( !driver->init() )
nkeynes@697
   148
                return FALSE;
nkeynes@697
   149
            audio_driver = driver;
nkeynes@697
   150
        }
nkeynes@111
   151
    }
nkeynes@111
   152
nkeynes@697
   153
    switch( driver->sample_format & AUDIO_FMT_SAMPLE_MASK ) {
nkeynes@697
   154
    case AUDIO_FMT_8BIT:
nkeynes@697
   155
        bytes_per_sample = 1;
nkeynes@697
   156
        break;
nkeynes@697
   157
    case AUDIO_FMT_16BIT:
nkeynes@697
   158
        bytes_per_sample = 2;
nkeynes@697
   159
        break;
nkeynes@697
   160
    case AUDIO_FMT_FLOAT:
nkeynes@697
   161
        bytes_per_sample = 4;
nkeynes@697
   162
        break;
nkeynes@697
   163
    }
nkeynes@697
   164
nkeynes@697
   165
    if( driver->sample_format & AUDIO_FMT_STEREO )
nkeynes@697
   166
        bytes_per_sample <<= 1;
nkeynes@697
   167
    if( driver->sample_rate == audio.output_rate &&
nkeynes@697
   168
            bytes_per_sample == audio.output_sample_size )
nkeynes@697
   169
        return TRUE;
nkeynes@697
   170
    samples_per_buffer = (driver->sample_rate * MS_PER_BUFFER / 1000);
nkeynes@66
   171
    for( i=0; i<NUM_BUFFERS; i++ ) {
nkeynes@697
   172
        if( audio.output_buffers[i] != NULL )
nkeynes@697
   173
            free(audio.output_buffers[i]);
nkeynes@697
   174
        audio.output_buffers[i] = g_malloc0( sizeof(struct audio_buffer) + samples_per_buffer * bytes_per_sample );
nkeynes@697
   175
        audio.output_buffers[i]->length = samples_per_buffer * bytes_per_sample;
nkeynes@697
   176
        audio.output_buffers[i]->posn = 0;
nkeynes@697
   177
        audio.output_buffers[i]->status = BUFFER_EMPTY;
nkeynes@66
   178
    }
nkeynes@697
   179
    audio.output_format = driver->sample_format;
nkeynes@697
   180
    audio.output_rate = driver->sample_rate;
nkeynes@66
   181
    audio.output_sample_size = bytes_per_sample;
nkeynes@66
   182
    audio.write_buffer = 0;
nkeynes@66
   183
    audio.read_buffer = 0;
nkeynes@66
   184
nkeynes@111
   185
    return TRUE;
nkeynes@66
   186
}
nkeynes@66
   187
nkeynes@66
   188
/**
nkeynes@66
   189
 * Mark the current write buffer as full and prepare the next buffer for
nkeynes@66
   190
 * writing. Returns the next buffer to write to.
nkeynes@66
   191
 * If all buffers are full, returns NULL.
nkeynes@66
   192
 */
nkeynes@66
   193
audio_buffer_t audio_next_write_buffer( )
nkeynes@66
   194
{
nkeynes@66
   195
    audio_buffer_t result = NULL;
nkeynes@66
   196
    audio_buffer_t current = audio.output_buffers[audio.write_buffer];
nkeynes@66
   197
    current->status = BUFFER_FULL;
nkeynes@66
   198
    if( audio.read_buffer == audio.write_buffer &&
nkeynes@697
   199
            audio_driver->process_buffer( current ) ) {
nkeynes@697
   200
        audio_next_read_buffer();
nkeynes@66
   201
    }
nkeynes@697
   202
    int next_buffer = NEXT_BUFFER();
nkeynes@697
   203
    result = audio.output_buffers[next_buffer];
nkeynes@66
   204
    if( result->status == BUFFER_FULL )
nkeynes@697
   205
        return NULL;
nkeynes@66
   206
    else {
nkeynes@697
   207
        audio.write_buffer = next_buffer;
nkeynes@697
   208
        result->status = BUFFER_WRITING;
nkeynes@697
   209
        return result;
nkeynes@66
   210
    }
nkeynes@66
   211
}
nkeynes@66
   212
nkeynes@66
   213
/**
nkeynes@66
   214
 * Mark the current read buffer as empty and return the next buffer for
nkeynes@66
   215
 * reading. If there is no next buffer yet, returns NULL.
nkeynes@66
   216
 */
nkeynes@66
   217
audio_buffer_t audio_next_read_buffer( )
nkeynes@66
   218
{
nkeynes@66
   219
    audio_buffer_t current = audio.output_buffers[audio.read_buffer];
nkeynes@697
   220
    if( current->status == BUFFER_FULL ) {
nkeynes@697
   221
        // Current read buffer has data, which we've just emptied
nkeynes@697
   222
        current->status = BUFFER_EMPTY;
nkeynes@697
   223
        current->posn = 0;
nkeynes@697
   224
        audio.read_buffer++;
nkeynes@697
   225
        if( audio.read_buffer == NUM_BUFFERS )
nkeynes@697
   226
            audio.read_buffer = 0;
nkeynes@697
   227
nkeynes@697
   228
        current = audio.output_buffers[audio.read_buffer];
nkeynes@697
   229
        if( current->status == BUFFER_FULL ) {
nkeynes@697
   230
            current->posn = 0;
nkeynes@697
   231
            return current;
nkeynes@697
   232
        }
nkeynes@697
   233
        else return NULL;
nkeynes@697
   234
    } else {
nkeynes@697
   235
        return NULL;
nkeynes@697
   236
    }
nkeynes@697
   237
nkeynes@66
   238
}
nkeynes@66
   239
nkeynes@66
   240
/*************************** ADPCM ***********************************/
nkeynes@66
   241
nkeynes@66
   242
/**
nkeynes@66
   243
 * The following section borrows heavily from ffmpeg, which is
nkeynes@66
   244
 * copyright (c) 2001-2003 by the fine folks at the ffmpeg project,
nkeynes@66
   245
 * distributed under the GPL version 2 or later.
nkeynes@66
   246
 */
nkeynes@66
   247
nkeynes@66
   248
#define CLAMP_TO_SHORT(value) \
nkeynes@736
   249
    if (value > 32767) \
nkeynes@66
   250
    value = 32767; \
nkeynes@736
   251
    else if (value < -32768) \
nkeynes@66
   252
    value = -32768; \
nkeynes@66
   253
nkeynes@66
   254
static const int yamaha_indexscale[] = {
nkeynes@736
   255
        230, 230, 230, 230, 307, 409, 512, 614,
nkeynes@736
   256
        230, 230, 230, 230, 307, 409, 512, 614
nkeynes@66
   257
};
nkeynes@66
   258
nkeynes@66
   259
static const int yamaha_difflookup[] = {
nkeynes@736
   260
        1, 3, 5, 7, 9, 11, 13, 15,
nkeynes@736
   261
        -1, -3, -5, -7, -9, -11, -13, -15
nkeynes@66
   262
};
nkeynes@66
   263
nkeynes@66
   264
static inline short adpcm_yamaha_decode_nibble( audio_channel_t c, 
nkeynes@736
   265
                                                unsigned char nibble )
nkeynes@66
   266
{
nkeynes@66
   267
    if( c->adpcm_step == 0 ) {
nkeynes@66
   268
        c->adpcm_predict = 0;
nkeynes@66
   269
        c->adpcm_step = 127;
nkeynes@66
   270
    }
nkeynes@66
   271
nkeynes@66
   272
    c->adpcm_predict += (c->adpcm_step * yamaha_difflookup[nibble]) >> 3;
nkeynes@66
   273
    CLAMP_TO_SHORT(c->adpcm_predict);
nkeynes@66
   274
    c->adpcm_step = (c->adpcm_step * yamaha_indexscale[nibble]) >> 8;
nkeynes@66
   275
    c->adpcm_step = CLAMP(c->adpcm_step, 127, 24567);
nkeynes@66
   276
    return c->adpcm_predict;
nkeynes@66
   277
}
nkeynes@66
   278
nkeynes@66
   279
/*************************** Sample mixer *****************************/
nkeynes@66
   280
nkeynes@66
   281
/**
nkeynes@66
   282
 * Mix a single output sample.
nkeynes@66
   283
 */
nkeynes@73
   284
void audio_mix_samples( int num_samples )
nkeynes@66
   285
{
nkeynes@66
   286
    int i, j;
nkeynes@73
   287
    int32_t result_buf[num_samples][2];
nkeynes@73
   288
nkeynes@73
   289
    memset( &result_buf, 0, sizeof(result_buf) );
nkeynes@66
   290
nkeynes@465
   291
    for( i=0; i < AUDIO_CHANNEL_COUNT; i++ ) {
nkeynes@697
   292
        audio_channel_t channel = &audio.channels[i];
nkeynes@697
   293
        if( channel->active ) {
nkeynes@697
   294
            int32_t sample;
nkeynes@697
   295
            int vol_left = (channel->vol * (32 - channel->pan)) >> 5;
nkeynes@697
   296
            int vol_right = (channel->vol * (channel->pan + 1)) >> 5;
nkeynes@697
   297
            switch( channel->sample_format ) {
nkeynes@697
   298
            case AUDIO_FMT_16BIT:
nkeynes@697
   299
                for( j=0; j<num_samples; j++ ) {
nkeynes@934
   300
                    sample = ((int16_t *)(aica_main_ram + channel->start))[channel->posn];
nkeynes@697
   301
                    result_buf[j][0] += sample * vol_left;
nkeynes@697
   302
                    result_buf[j][1] += sample * vol_right;
nkeynes@697
   303
nkeynes@697
   304
                    channel->posn_left += channel->sample_rate;
nkeynes@697
   305
                    while( channel->posn_left > audio.output_rate ) {
nkeynes@697
   306
                        channel->posn_left -= audio.output_rate;
nkeynes@697
   307
                        channel->posn++;
nkeynes@697
   308
nkeynes@697
   309
                        if( channel->posn == channel->end ) {
nkeynes@697
   310
                            if( channel->loop ) {
nkeynes@697
   311
                                channel->posn = channel->loop_start;
nkeynes@697
   312
                                channel->loop = LOOP_LOOPED;
nkeynes@697
   313
                            } else {
nkeynes@697
   314
                                audio_stop_channel(i);
nkeynes@697
   315
                                j = num_samples;
nkeynes@697
   316
                                break;
nkeynes@697
   317
                            }
nkeynes@697
   318
                        }
nkeynes@697
   319
                    }
nkeynes@697
   320
                }
nkeynes@697
   321
                break;
nkeynes@697
   322
            case AUDIO_FMT_8BIT:
nkeynes@697
   323
                for( j=0; j<num_samples; j++ ) {
nkeynes@934
   324
                    sample = ((int8_t *)(aica_main_ram + channel->start))[channel->posn] << 8;
nkeynes@697
   325
                    result_buf[j][0] += sample * vol_left;
nkeynes@697
   326
                    result_buf[j][1] += sample * vol_right;
nkeynes@697
   327
nkeynes@697
   328
                    channel->posn_left += channel->sample_rate;
nkeynes@697
   329
                    while( channel->posn_left > audio.output_rate ) {
nkeynes@697
   330
                        channel->posn_left -= audio.output_rate;
nkeynes@697
   331
                        channel->posn++;
nkeynes@697
   332
nkeynes@697
   333
                        if( channel->posn == channel->end ) {
nkeynes@697
   334
                            if( channel->loop ) {
nkeynes@697
   335
                                channel->posn = channel->loop_start;
nkeynes@697
   336
                                channel->loop = LOOP_LOOPED;
nkeynes@697
   337
                            } else {
nkeynes@697
   338
                                audio_stop_channel(i);
nkeynes@697
   339
                                j = num_samples;
nkeynes@697
   340
                                break;
nkeynes@697
   341
                            }
nkeynes@697
   342
                        }
nkeynes@697
   343
                    }
nkeynes@697
   344
                }
nkeynes@697
   345
                break;
nkeynes@697
   346
            case AUDIO_FMT_ADPCM:
nkeynes@697
   347
                for( j=0; j<num_samples; j++ ) {
nkeynes@697
   348
                    sample = (int16_t)channel->adpcm_predict;
nkeynes@697
   349
                    result_buf[j][0] += sample * vol_left;
nkeynes@697
   350
                    result_buf[j][1] += sample * vol_right;
nkeynes@697
   351
                    channel->posn_left += channel->sample_rate;
nkeynes@697
   352
                    while( channel->posn_left > audio.output_rate ) {
nkeynes@697
   353
                        channel->posn_left -= audio.output_rate;
nkeynes@697
   354
                        channel->posn++;
nkeynes@697
   355
                        if( channel->posn == channel->end ) {
nkeynes@697
   356
                            if( channel->loop ) {
nkeynes@697
   357
                                channel->posn = channel->loop_start;
nkeynes@697
   358
                                channel->loop = LOOP_LOOPED;
nkeynes@697
   359
                                channel->adpcm_predict = 0;
nkeynes@697
   360
                                channel->adpcm_step = 0;
nkeynes@697
   361
                            } else {
nkeynes@697
   362
                                audio_stop_channel(i);
nkeynes@697
   363
                                j = num_samples;
nkeynes@697
   364
                                break;
nkeynes@697
   365
                            }
nkeynes@697
   366
                        }
nkeynes@934
   367
                        uint8_t data = ((uint8_t *)(aica_main_ram + channel->start))[channel->posn>>1];
nkeynes@697
   368
                        if( channel->posn&1 ) {
nkeynes@697
   369
                            adpcm_yamaha_decode_nibble( channel, (data >> 4) & 0x0F );
nkeynes@697
   370
                        } else {
nkeynes@697
   371
                            adpcm_yamaha_decode_nibble( channel, data & 0x0F );
nkeynes@697
   372
                        }
nkeynes@697
   373
                    }
nkeynes@697
   374
                }
nkeynes@697
   375
                break;
nkeynes@697
   376
            default:
nkeynes@697
   377
                break;
nkeynes@697
   378
            }
nkeynes@697
   379
        }
nkeynes@66
   380
    }
nkeynes@736
   381
nkeynes@66
   382
    /* Down-render to the final output format */
nkeynes@697
   383
    audio_buffer_t buf = audio.output_buffers[audio.write_buffer];
nkeynes@697
   384
    if( buf->status == BUFFER_FULL ) {
nkeynes@697
   385
        buf = audio_next_write_buffer();
nkeynes@697
   386
        if( buf == NULL ) { // no available space
nkeynes@697
   387
            return;
nkeynes@697
   388
        }
nkeynes@697
   389
    }
nkeynes@736
   390
nkeynes@697
   391
    switch( audio.output_format & AUDIO_FMT_SAMPLE_MASK ) {
nkeynes@697
   392
    case AUDIO_FMT_FLOAT: {
nkeynes@697
   393
        float scale = 1.0/SHRT_MAX;
nkeynes@697
   394
        float *data = (float *)&buf->data[buf->posn];
nkeynes@697
   395
        for( j=0; j<num_samples; j++ ) {
nkeynes@697
   396
            *data++ = scale * (result_buf[j][0] >> 6);
nkeynes@697
   397
            *data++ = scale * (result_buf[j][1] >> 6);
nkeynes@697
   398
            buf->posn += 8;
nkeynes@697
   399
            if( buf->posn == buf->length ) {
nkeynes@697
   400
                buf = audio_next_write_buffer();
nkeynes@697
   401
                if( buf == NULL ) {
nkeynes@697
   402
                    break;
nkeynes@697
   403
                }
nkeynes@697
   404
                data = (float *)&buf->data[0];
nkeynes@697
   405
            }
nkeynes@697
   406
        }
nkeynes@697
   407
        break;
nkeynes@697
   408
    }
nkeynes@697
   409
    case AUDIO_FMT_16BIT: {
nkeynes@697
   410
        int16_t *data = (int16_t *)&buf->data[buf->posn];
nkeynes@697
   411
        for( j=0; j < num_samples; j++ ) {
nkeynes@697
   412
            *data++ = (int16_t)(result_buf[j][0] >> 6);
nkeynes@697
   413
            *data++ = (int16_t)(result_buf[j][1] >> 6);	
nkeynes@697
   414
            buf->posn += 4;
nkeynes@697
   415
            if( buf->posn == buf->length ) {
nkeynes@697
   416
                buf = audio_next_write_buffer();
nkeynes@697
   417
                if( buf == NULL ) {
nkeynes@697
   418
                    // All buffers are full
nkeynes@697
   419
                    break;
nkeynes@697
   420
                }
nkeynes@697
   421
                data = (int16_t *)&buf->data[0];
nkeynes@697
   422
            }
nkeynes@697
   423
        }
nkeynes@697
   424
        break;
nkeynes@697
   425
    }
nkeynes@697
   426
    case AUDIO_FMT_8BIT: {
nkeynes@700
   427
        int8_t *data = (int8_t *)&buf->data[buf->posn];
nkeynes@697
   428
        for( j=0; j < num_samples; j++ ) {
nkeynes@697
   429
            *data++ = (int8_t)(result_buf[j][0] >> 16);
nkeynes@697
   430
            *data++ = (int8_t)(result_buf[j][1] >> 16);	
nkeynes@697
   431
            buf->posn += 2;
nkeynes@697
   432
            if( buf->posn == buf->length ) {
nkeynes@697
   433
                buf = audio_next_write_buffer();
nkeynes@697
   434
                if( buf == NULL ) {
nkeynes@697
   435
                    // All buffers are full
nkeynes@697
   436
                    break;
nkeynes@697
   437
                }
nkeynes@697
   438
                buf = audio.output_buffers[audio.write_buffer];
nkeynes@700
   439
                data = (int8_t *)&buf->data[0];
nkeynes@697
   440
            }
nkeynes@697
   441
        }
nkeynes@697
   442
        break;
nkeynes@697
   443
    }
nkeynes@66
   444
    }
nkeynes@66
   445
}
nkeynes@66
   446
nkeynes@66
   447
/********************** Internal AICA calls ***************************/
nkeynes@66
   448
nkeynes@66
   449
audio_channel_t audio_get_channel( int channel ) 
nkeynes@66
   450
{
nkeynes@66
   451
    return &audio.channels[channel];
nkeynes@66
   452
}
nkeynes@66
   453
nkeynes@434
   454
void audio_start_stop_channel( int channel, gboolean start )
nkeynes@434
   455
{
nkeynes@434
   456
    if( audio.channels[channel].active ) {
nkeynes@736
   457
        if( !start ) {
nkeynes@736
   458
            audio_stop_channel(channel);
nkeynes@736
   459
        }
nkeynes@434
   460
    } else if( start ) {
nkeynes@736
   461
        audio_start_channel(channel);
nkeynes@434
   462
    }
nkeynes@434
   463
}
nkeynes@434
   464
nkeynes@66
   465
void audio_stop_channel( int channel ) 
nkeynes@66
   466
{
nkeynes@66
   467
    audio.channels[channel].active = FALSE;
nkeynes@66
   468
}
nkeynes@66
   469
nkeynes@66
   470
nkeynes@66
   471
void audio_start_channel( int channel )
nkeynes@66
   472
{
nkeynes@66
   473
    audio.channels[channel].posn = 0;
nkeynes@66
   474
    audio.channels[channel].posn_left = 0;
nkeynes@66
   475
    audio.channels[channel].active = TRUE;
nkeynes@434
   476
    if( audio.channels[channel].sample_format == AUDIO_FMT_ADPCM ) {
nkeynes@736
   477
        audio.channels[channel].adpcm_step = 0;
nkeynes@736
   478
        audio.channels[channel].adpcm_predict = 0;
nkeynes@934
   479
        uint8_t data = ((uint8_t *)(aica_main_ram + audio.channels[channel].start))[0];
nkeynes@736
   480
        adpcm_yamaha_decode_nibble( &audio.channels[channel], data & 0x0F );
nkeynes@434
   481
    }
nkeynes@66
   482
}
.