Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 823:8a592668322f
prev822:6e0536758465
next841:808d64b05073
author nkeynes
date Sun Aug 24 01:43:17 2008 +0000 (15 years ago)
permissions -rw-r--r--
last change Correct generated UNDEF() => UNDEF(ir) for consistency with UNIMP(ir)
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "mem.h"
    27 #include "clock.h"
    28 #include "eventq.h"
    29 #include "syscall.h"
    30 #include "sh4/intc.h"
    31 #include "sh4/sh4core.h"
    32 #include "sh4/sh4mmio.h"
    33 #include "sh4/sh4stat.h"
    34 #include "sh4/sh4trans.h"
    35 #include "sh4/xltcache.h"
    37 void sh4_init( void );
    38 void sh4_xlat_init( void );
    39 void sh4_reset( void );
    40 void sh4_start( void );
    41 void sh4_stop( void );
    42 void sh4_save_state( FILE *f );
    43 int sh4_load_state( FILE *f );
    45 uint32_t sh4_run_slice( uint32_t );
    46 uint32_t sh4_xlat_run_slice( uint32_t );
    48 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_reset, 
    49         sh4_start, sh4_run_slice, sh4_stop,
    50         sh4_save_state, sh4_load_state };
    52 struct sh4_registers sh4r;
    53 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
    54 int sh4_breakpoint_count = 0;
    55 sh4ptr_t sh4_main_ram;
    56 gboolean sh4_starting = FALSE;
    57 static gboolean sh4_use_translator = FALSE;
    58 static jmp_buf sh4_exit_jmp_buf;
    59 static gboolean sh4_running = FALSE;
    60 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
    62 void sh4_translate_set_enabled( gboolean use )
    63 {
    64     // No-op if the translator was not built
    65 #ifdef SH4_TRANSLATOR
    66     xlat_cache_init();
    67     if( use ) {
    68         sh4_translate_init();
    69     }
    70     sh4_use_translator = use;
    71 #endif
    72 }
    74 gboolean sh4_translate_is_enabled()
    75 {
    76     return sh4_use_translator;
    77 }
    79 void sh4_init(void)
    80 {
    81     register_io_regions( mmio_list_sh4mmio );
    82     sh4_main_ram = mem_get_region_by_name(MEM_REGION_MAIN);
    83     MMU_init();
    84     TMU_init();
    85     sh4_reset();
    86 #ifdef ENABLE_SH4STATS
    87     sh4_stats_reset();
    88 #endif
    89 }
    91 void sh4_start(void)
    92 {
    93     sh4_starting = TRUE;
    94 }
    96 void sh4_reset(void)
    97 {
    98     if(	sh4_use_translator ) {
    99         xlat_flush_cache();
   100     }
   102     /* zero everything out, for the sake of having a consistent state. */
   103     memset( &sh4r, 0, sizeof(sh4r) );
   105     /* Resume running if we were halted */
   106     sh4r.sh4_state = SH4_STATE_RUNNING;
   108     sh4r.pc    = 0xA0000000;
   109     sh4r.new_pc= 0xA0000002;
   110     sh4r.vbr   = 0x00000000;
   111     sh4r.fpscr = 0x00040001;
   112     sh4r.sr    = 0x700000F0;
   114     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   115     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   117     /* Peripheral modules */
   118     CPG_reset();
   119     INTC_reset();
   120     MMU_reset();
   121     TMU_reset();
   122     SCIF_reset();
   124 #ifdef ENABLE_SH4STATS
   125     sh4_stats_reset();
   126 #endif
   127 }
   129 void sh4_stop(void)
   130 {
   131     if(	sh4_use_translator ) {
   132         /* If we were running with the translator, update new_pc and in_delay_slot */
   133         sh4r.new_pc = sh4r.pc+2;
   134         sh4r.in_delay_slot = FALSE;
   135     }
   137 }
   139 /**
   140  * Execute a timeslice using translated code only (ie translate/execute loop)
   141  */
   142 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   143 {
   144     sh4r.slice_cycle = 0;
   146     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   147         sh4_sleep_run_slice(nanosecs);
   148     }
   150     /* Setup for sudden vm exits */
   151     switch( setjmp(sh4_exit_jmp_buf) ) {
   152     case CORE_EXIT_BREAKPOINT:
   153         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   154         /* fallthrough */
   155     case CORE_EXIT_HALT:
   156         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   157             TMU_run_slice( sh4r.slice_cycle );
   158             SCIF_run_slice( sh4r.slice_cycle );
   159             dreamcast_stop();
   160             return sh4r.slice_cycle;
   161         }
   162     case CORE_EXIT_SYSRESET:
   163         dreamcast_reset();
   164         break;
   165     case CORE_EXIT_SLEEP:
   166         sh4_sleep_run_slice(nanosecs);
   167         break;  
   168     case CORE_EXIT_FLUSH_ICACHE:
   169 #ifdef SH4_TRANSLATOR
   170         xlat_flush_cache();
   171 #endif
   172         break;
   173     }
   175     sh4_running = TRUE;
   177     /* Execute the core's real slice */
   178 #ifdef SH4_TRANSLATOR
   179     if( sh4_use_translator ) {
   180         sh4_translate_run_slice(nanosecs);
   181     } else {
   182         sh4_emulate_run_slice(nanosecs);
   183     }
   184 #else
   185     sh4_emulate_run_slice(nanosecs);
   186 #endif
   188     /* And finish off the peripherals afterwards */
   190     sh4_running = FALSE;
   191     sh4_starting = FALSE;
   192     sh4r.slice_cycle = nanosecs;
   193     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   194         TMU_run_slice( nanosecs );
   195         SCIF_run_slice( nanosecs );
   196     }
   197     return nanosecs;   
   198 }
   200 void sh4_core_exit( int exit_code )
   201 {
   202     if( sh4_running ) {
   203 #ifdef SH4_TRANSLATOR
   204         if( sh4_use_translator ) {
   205             sh4_translate_exit_recover();
   206         }
   207 #endif
   208         // longjmp back into sh4_run_slice
   209         sh4_running = FALSE;
   210         longjmp(sh4_exit_jmp_buf, exit_code);
   211     }
   212 }
   214 void sh4_flush_icache()
   215 {
   216 #ifdef SH4_TRANSLATOR
   217     // FIXME: Special case needs to be generalized
   218     if( sh4_use_translator ) {
   219         if( sh4_translate_flush_cache() ) {
   220             longjmp(sh4_exit_jmp_buf, CORE_EXIT_CONTINUE);
   221         }
   222     }
   223 #endif
   224 }
   226 void sh4_save_state( FILE *f )
   227 {
   228     if(	sh4_use_translator ) {
   229         /* If we were running with the translator, update new_pc and in_delay_slot */
   230         sh4r.new_pc = sh4r.pc+2;
   231         sh4r.in_delay_slot = FALSE;
   232     }
   234     fwrite( &sh4r, sizeof(sh4r), 1, f );
   235     MMU_save_state( f );
   236     INTC_save_state( f );
   237     TMU_save_state( f );
   238     SCIF_save_state( f );
   239 }
   241 int sh4_load_state( FILE * f )
   242 {
   243     if(	sh4_use_translator ) {
   244         xlat_flush_cache();
   245     }
   246     fread( &sh4r, sizeof(sh4r), 1, f );
   247     MMU_load_state( f );
   248     INTC_load_state( f );
   249     TMU_load_state( f );
   250     return SCIF_load_state( f );
   251 }
   254 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   255 {
   256     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   257     sh4_breakpoints[sh4_breakpoint_count].type = type;
   258     if( sh4_use_translator ) {
   259         xlat_invalidate_word( pc );
   260     }
   261     sh4_breakpoint_count++;
   262 }
   264 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   265 {
   266     int i;
   268     for( i=0; i<sh4_breakpoint_count; i++ ) {
   269         if( sh4_breakpoints[i].address == pc && 
   270                 sh4_breakpoints[i].type == type ) {
   271             while( ++i < sh4_breakpoint_count ) {
   272                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   273                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   274             }
   275             if( sh4_use_translator ) {
   276                 xlat_invalidate_word( pc );
   277             }
   278             sh4_breakpoint_count--;
   279             return TRUE;
   280         }
   281     }
   282     return FALSE;
   283 }
   285 int sh4_get_breakpoint( uint32_t pc )
   286 {
   287     int i;
   288     for( i=0; i<sh4_breakpoint_count; i++ ) {
   289         if( sh4_breakpoints[i].address == pc )
   290             return sh4_breakpoints[i].type;
   291     }
   292     return 0;
   293 }
   295 void sh4_set_pc( int pc )
   296 {
   297     sh4r.pc = pc;
   298     sh4r.new_pc = pc+2;
   299 }
   302 /******************************* Support methods ***************************/
   304 static void sh4_switch_banks( )
   305 {
   306     uint32_t tmp[8];
   308     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   309     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   310     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   311 }
   313 void sh4_switch_fr_banks()
   314 {
   315     int i;
   316     for( i=0; i<16; i++ ) {
   317         float tmp = sh4r.fr[0][i];
   318         sh4r.fr[0][i] = sh4r.fr[1][i];
   319         sh4r.fr[1][i] = tmp;
   320     }
   321 }
   323 void sh4_write_sr( uint32_t newval )
   324 {
   325     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   326     int newbank = (newval&SR_MDRB) == SR_MDRB;
   327     if( oldbank != newbank )
   328         sh4_switch_banks();
   329     sh4r.sr = newval & SR_MASK;
   330     sh4r.t = (newval&SR_T) ? 1 : 0;
   331     sh4r.s = (newval&SR_S) ? 1 : 0;
   332     sh4r.m = (newval&SR_M) ? 1 : 0;
   333     sh4r.q = (newval&SR_Q) ? 1 : 0;
   334     intc_mask_changed();
   335 }
   337 void sh4_write_fpscr( uint32_t newval )
   338 {
   339     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   340         sh4_switch_fr_banks();
   341     }
   342     sh4r.fpscr = newval & FPSCR_MASK;
   343 }
   345 uint32_t sh4_read_sr( void )
   346 {
   347     /* synchronize sh4r.sr with the various bitflags */
   348     sh4r.sr &= SR_MQSTMASK;
   349     if( sh4r.t ) sh4r.sr |= SR_T;
   350     if( sh4r.s ) sh4r.sr |= SR_S;
   351     if( sh4r.m ) sh4r.sr |= SR_M;
   352     if( sh4r.q ) sh4r.sr |= SR_Q;
   353     return sh4r.sr;
   354 }
   358 #define RAISE( x, v ) do{			\
   359     if( sh4r.vbr == 0 ) { \
   360         ERROR( "%08X: VBR not initialized while raising exception %03X, halting", sh4r.pc, x ); \
   361         sh4_core_exit(CORE_EXIT_HALT); return FALSE;	\
   362     } else { \
   363         sh4r.spc = sh4r.pc;	\
   364         sh4r.ssr = sh4_read_sr(); \
   365         sh4r.sgr = sh4r.r[15]; \
   366         MMIO_WRITE(MMU,EXPEVT,x); \
   367         sh4r.pc = sh4r.vbr + v; \
   368         sh4r.new_pc = sh4r.pc + 2; \
   369         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB ); \
   370         if( sh4r.in_delay_slot ) { \
   371             sh4r.in_delay_slot = 0; \
   372             sh4r.spc -= 2; \
   373         } \
   374     } \
   375     return TRUE; } while(0)
   377 /**
   378  * Raise a general CPU exception for the specified exception code.
   379  * (NOT for TRAPA or TLB exceptions)
   380  */
   381 gboolean sh4_raise_exception( int code )
   382 {
   383     RAISE( code, EXV_EXCEPTION );
   384 }
   386 /**
   387  * Raise a CPU reset exception with the specified exception code.
   388  */
   389 gboolean sh4_raise_reset( int code )
   390 {
   391     // FIXME: reset modules as per "manual reset"
   392     sh4_reset();
   393     MMIO_WRITE(MMU,EXPEVT,code);
   394     sh4r.vbr = 0;
   395     sh4r.pc = 0xA0000000;
   396     sh4r.new_pc = sh4r.pc + 2;
   397     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)
   398                   &(~SR_FD) );
   399     return TRUE;
   400 }
   402 gboolean sh4_raise_trap( int trap )
   403 {
   404     MMIO_WRITE( MMU, TRA, trap<<2 );
   405     RAISE( EXC_TRAP, EXV_EXCEPTION );
   406 }
   408 gboolean sh4_raise_slot_exception( int normal_code, int slot_code ) {
   409     if( sh4r.in_delay_slot ) {
   410         return sh4_raise_exception(slot_code);
   411     } else {
   412         return sh4_raise_exception(normal_code);
   413     }
   414 }
   416 gboolean sh4_raise_tlb_exception( int code )
   417 {
   418     RAISE( code, EXV_TLBMISS );
   419 }
   421 void sh4_accept_interrupt( void )
   422 {
   423     uint32_t code = intc_accept_interrupt();
   424     sh4r.ssr = sh4_read_sr();
   425     sh4r.spc = sh4r.pc;
   426     sh4r.sgr = sh4r.r[15];
   427     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   428     MMIO_WRITE( MMU, INTEVT, code );
   429     sh4r.pc = sh4r.vbr + 0x600;
   430     sh4r.new_pc = sh4r.pc + 2;
   431     //    WARN( "Accepting interrupt %03X, from %08X => %08X", code, sh4r.spc, sh4r.pc );
   432 }
   434 void signsat48( void )
   435 {
   436     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   437         sh4r.mac = 0xFFFF800000000000LL;
   438     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   439         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   440 }
   442 void sh4_fsca( uint32_t anglei, float *fr )
   443 {
   444     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   445     *fr++ = cosf(angle);
   446     *fr = sinf(angle);
   447 }
   449 /**
   450  * Enter sleep mode (eg by executing a SLEEP instruction).
   451  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   452  * are up to date.
   453  */
   454 void sh4_sleep(void)
   455 {
   456     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   457         sh4r.sh4_state = SH4_STATE_STANDBY;
   458         /* Bring all running peripheral modules up to date, and then halt them. */
   459         TMU_run_slice( sh4r.slice_cycle );
   460         SCIF_run_slice( sh4r.slice_cycle );
   461     } else {
   462         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   463             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   464             /* Halt DMAC but other peripherals still running */
   466         } else {
   467             sh4r.sh4_state = SH4_STATE_SLEEP;
   468         }
   469     }
   470     sh4_core_exit( CORE_EXIT_SLEEP );
   471 }
   473 /**
   474  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   475  * and restarts any peripheral devices that were stopped.
   476  */
   477 void sh4_wakeup(void)
   478 {
   479     switch( sh4r.sh4_state ) {
   480     case SH4_STATE_STANDBY:
   481         break;
   482     case SH4_STATE_DEEP_SLEEP:
   483         break;
   484     case SH4_STATE_SLEEP:
   485         break;
   486     }
   487     sh4r.sh4_state = SH4_STATE_RUNNING;
   488 }
   490 /**
   491  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   492  * Returns when either the SH4 wakes up (interrupt received) or the end of
   493  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   494  * returns the same value.
   495  */
   496 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   497 {
   498     int sleep_state = sh4r.sh4_state;
   499     assert( sleep_state != SH4_STATE_RUNNING );
   501     while( sh4r.event_pending < nanosecs ) {
   502         sh4r.slice_cycle = sh4r.event_pending;
   503         if( sh4r.event_types & PENDING_EVENT ) {
   504             event_execute();
   505         }
   506         if( sh4r.event_types & PENDING_IRQ ) {
   507             sh4_wakeup();
   508             return sh4r.slice_cycle;
   509         }
   510     }
   511     sh4r.slice_cycle = nanosecs;
   512     return sh4r.slice_cycle;
   513 }
   516 /**
   517  * Compute the matrix tranform of fv given the matrix xf.
   518  * Both fv and xf are word-swapped as per the sh4r.fr banks
   519  */
   520 void sh4_ftrv( float *target )
   521 {
   522     float fv[4] = { target[1], target[0], target[3], target[2] };
   523     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   524     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   525     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   526     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   527     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   528     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   529     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   530     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   531 }
   533 gboolean sh4_has_page( sh4vma_t vma )
   534 {
   535     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   536     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   537 }
.