Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 1125:9dd5dee45db9
prev1112:4cac5e474d4c
next1171:d644413208a3
author nkeynes
date Thu Nov 11 17:51:37 2010 +1000 (13 years ago)
permissions -rw-r--r--
last change Add convenience gl_check_error() function
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "cpu.h"
    27 #include "mem.h"
    28 #include "clock.h"
    29 #include "eventq.h"
    30 #include "syscall.h"
    31 #include "sh4/intc.h"
    32 #include "sh4/mmu.h"
    33 #include "sh4/sh4core.h"
    34 #include "sh4/sh4dasm.h"
    35 #include "sh4/sh4mmio.h"
    36 #include "sh4/sh4stat.h"
    37 #include "sh4/sh4trans.h"
    38 #include "xlat/xltcache.h"
    40 #ifndef M_PI
    41 #define M_PI        3.14159265358979323846264338327950288
    42 #endif
    44 void sh4_init( void );
    45 void sh4_poweron_reset( void );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length );
    51 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length );
    52 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length );
    53 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length );
    55 uint32_t sh4_run_slice( uint32_t );
    57 /* Note: this must match GDB's ordering */
    58 const struct reg_desc_struct sh4_reg_map[] = 
    59   { {"R0", REG_TYPE_INT, &sh4r.r[0]}, {"R1", REG_TYPE_INT, &sh4r.r[1]},
    60     {"R2", REG_TYPE_INT, &sh4r.r[2]}, {"R3", REG_TYPE_INT, &sh4r.r[3]},
    61     {"R4", REG_TYPE_INT, &sh4r.r[4]}, {"R5", REG_TYPE_INT, &sh4r.r[5]},
    62     {"R6", REG_TYPE_INT, &sh4r.r[6]}, {"R7", REG_TYPE_INT, &sh4r.r[7]},
    63     {"R8", REG_TYPE_INT, &sh4r.r[8]}, {"R9", REG_TYPE_INT, &sh4r.r[9]},
    64     {"R10",REG_TYPE_INT, &sh4r.r[10]}, {"R11",REG_TYPE_INT, &sh4r.r[11]},
    65     {"R12",REG_TYPE_INT, &sh4r.r[12]}, {"R13",REG_TYPE_INT, &sh4r.r[13]},
    66     {"R14",REG_TYPE_INT, &sh4r.r[14]}, {"R15",REG_TYPE_INT, &sh4r.r[15]},
    67     {"PC", REG_TYPE_INT, &sh4r.pc}, {"PR", REG_TYPE_INT, &sh4r.pr},
    68     {"GBR", REG_TYPE_INT, &sh4r.gbr}, {"VBR",REG_TYPE_INT, &sh4r.vbr}, 
    69     {"MACH",REG_TYPE_INT, ((uint32_t *)&sh4r.mac)+1}, {"MACL",REG_TYPE_INT, &sh4r.mac},
    70     {"SR", REG_TYPE_INT, &sh4r.sr},
    71     {"FPUL", REG_TYPE_INT, &sh4r.fpul.i}, {"FPSCR", REG_TYPE_INT, &sh4r.fpscr},
    73     {"FR0", REG_TYPE_FLOAT, &sh4r.fr[0][1] },{"FR1", REG_TYPE_FLOAT, &sh4r.fr[0][0]},
    74     {"FR2", REG_TYPE_FLOAT, &sh4r.fr[0][3] },{"FR3", REG_TYPE_FLOAT, &sh4r.fr[0][2]},
    75     {"FR4", REG_TYPE_FLOAT, &sh4r.fr[0][5] },{"FR5", REG_TYPE_FLOAT, &sh4r.fr[0][4]},
    76     {"FR6", REG_TYPE_FLOAT, &sh4r.fr[0][7] },{"FR7", REG_TYPE_FLOAT, &sh4r.fr[0][6]},
    77     {"FR8", REG_TYPE_FLOAT, &sh4r.fr[0][9] },{"FR9", REG_TYPE_FLOAT, &sh4r.fr[0][8]},
    78     {"FR10", REG_TYPE_FLOAT, &sh4r.fr[0][11] },{"FR11", REG_TYPE_FLOAT, &sh4r.fr[0][10]},
    79     {"FR12", REG_TYPE_FLOAT, &sh4r.fr[0][13] },{"FR13", REG_TYPE_FLOAT, &sh4r.fr[0][12]},
    80     {"FR14", REG_TYPE_FLOAT, &sh4r.fr[0][15] },{"FR15", REG_TYPE_FLOAT, &sh4r.fr[0][14]},
    82     {"SSR",REG_TYPE_INT, &sh4r.ssr}, {"SPC", REG_TYPE_INT, &sh4r.spc},
    84     {"R0B0", REG_TYPE_INT, NULL}, {"R1B0", REG_TYPE_INT, NULL},
    85     {"R2B0", REG_TYPE_INT, NULL}, {"R3B0", REG_TYPE_INT, NULL},
    86     {"R4B0", REG_TYPE_INT, NULL}, {"R5B0", REG_TYPE_INT, NULL},
    87     {"R6B0", REG_TYPE_INT, NULL}, {"R7B0", REG_TYPE_INT, NULL},
    88     {"R0B1", REG_TYPE_INT, NULL}, {"R1B1", REG_TYPE_INT, NULL},
    89     {"R2B1", REG_TYPE_INT, NULL}, {"R3B1", REG_TYPE_INT, NULL},
    90     {"R4B1", REG_TYPE_INT, NULL}, {"R5B1", REG_TYPE_INT, NULL},
    91     {"R6B1", REG_TYPE_INT, NULL}, {"R7B1", REG_TYPE_INT, NULL},
    93     {"SGR",REG_TYPE_INT, &sh4r.sgr}, {"DBR", REG_TYPE_INT, &sh4r.dbr},
    95     {"XF0", REG_TYPE_FLOAT, &sh4r.fr[1][1] },{"XF1", REG_TYPE_FLOAT, &sh4r.fr[1][0]},
    96     {"XF2", REG_TYPE_FLOAT, &sh4r.fr[1][3] },{"XF3", REG_TYPE_FLOAT, &sh4r.fr[1][2]},
    97     {"XF4", REG_TYPE_FLOAT, &sh4r.fr[1][5] },{"XF5", REG_TYPE_FLOAT, &sh4r.fr[1][4]},
    98     {"XF6", REG_TYPE_FLOAT, &sh4r.fr[1][7] },{"XF7", REG_TYPE_FLOAT, &sh4r.fr[1][6]},
    99     {"XF8", REG_TYPE_FLOAT, &sh4r.fr[1][9] },{"XF9", REG_TYPE_FLOAT, &sh4r.fr[1][8]},
   100     {"XF10", REG_TYPE_FLOAT, &sh4r.fr[1][11] },{"XF11", REG_TYPE_FLOAT, &sh4r.fr[1][10]},
   101     {"XF12", REG_TYPE_FLOAT, &sh4r.fr[1][13] },{"XF13", REG_TYPE_FLOAT, &sh4r.fr[1][12]},
   102     {"XF14", REG_TYPE_FLOAT, &sh4r.fr[1][15] },{"XF15", REG_TYPE_FLOAT, &sh4r.fr[1][14]},
   104     {NULL, 0, NULL} };
   106 void *sh4_get_register( int reg )
   107 {
   108     if( reg < 0 || reg >= 94 ) {
   109         return NULL;
   110     } else if( reg < 43 ) {
   111         return sh4_reg_map[reg].value;
   112     } else if( reg < 51 ) {
   113         /* r0b0..r7b0 */
   114         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   115             /* bank 1 is primary */
   116             return &sh4r.r_bank[reg-43];
   117         } else {
   118             return &sh4r.r[reg-43];
   119         }
   120     } else if( reg < 59 ) {
   121         /* r0b1..r7b1 */
   122         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   123             /* bank 1 is primary */
   124             return &sh4r.r[reg-43];
   125         } else {
   126             return &sh4r.r_bank[reg-43];
   127         }
   128     } else {
   129         return NULL; /* not supported at the moment */
   130     }
   131 }
   134 const struct cpu_desc_struct sh4_cpu_desc = 
   135     { "SH4", sh4_disasm_instruction, sh4_get_register, sh4_has_page,
   136             sh4_debug_read_phys, sh4_debug_write_phys, sh4_debug_read_vma, sh4_debug_write_vma,
   137             sh4_execute_instruction, 
   138       sh4_set_breakpoint, sh4_clear_breakpoint, sh4_get_breakpoint, 2,
   139       (char *)&sh4r, sizeof(sh4r), sh4_reg_map, 23, 59,
   140       &sh4r.pc };
   142 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, 
   143         sh4_start, sh4_run_slice, sh4_stop,
   144         sh4_save_state, sh4_load_state };
   146 struct sh4_registers sh4r __attribute__((aligned(16)));
   147 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
   148 int sh4_breakpoint_count = 0;
   150 gboolean sh4_starting = FALSE;
   151 static gboolean sh4_use_translator = FALSE;
   152 static jmp_buf sh4_exit_jmp_buf;
   153 static gboolean sh4_running = FALSE;
   154 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
   156 /* At the moment this is a dummy event to mark the end of the
   157  * timeslice
   158  */
   159 void sh4_dummy_event(int eventid)
   160 {
   161 }
   163 void sh4_set_core( sh4core_t core )
   164 {
   165     // No-op if the translator was not built
   166 #ifdef SH4_TRANSLATOR
   167     if( core != SH4_INTERPRET ) {
   168         sh4_translate_init();
   169         sh4_use_translator = TRUE;
   170         if( core == SH4_SHADOW ) {
   171             sh4_shadow_init();
   172         }
   173     } else {
   174         sh4_use_translator = FALSE;
   175     }
   176 #endif
   177 }
   179 gboolean sh4_translate_is_enabled()
   180 {
   181     return sh4_use_translator;
   182 }
   184 void sh4_init(void)
   185 {
   186     register_io_regions( mmio_list_sh4mmio );
   187     register_event_callback( EVENT_ENDTIMESLICE, sh4_dummy_event );
   188     MMU_init();
   189     TMU_init();
   190     xlat_cache_init();
   191     sh4_poweron_reset();
   192 #ifdef ENABLE_SH4STATS
   193     sh4_stats_reset();
   194 #endif
   195 }
   197 void sh4_start(void)
   198 {
   199     sh4_starting = TRUE;
   200 }
   202 void sh4_poweron_reset(void)
   203 {
   204     /* zero everything out, for the sake of having a consistent state. */
   205     memset( &sh4r, 0, sizeof(sh4r) );
   206     if(	sh4_use_translator ) {
   207         xlat_flush_cache();
   208     }
   210     /* Resume running if we were halted */
   211     sh4r.sh4_state = SH4_STATE_RUNNING;
   213     sh4r.pc    = 0xA0000000;
   214     sh4r.new_pc= 0xA0000002;
   215     sh4r.vbr   = 0x00000000;
   216     sh4r.fpscr = 0x00040001;
   217     sh4_write_sr(0x700000F0);
   219     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   220     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   222     /* Peripheral modules */
   223     CPG_reset();
   224     INTC_reset();
   225     PMM_reset();
   226     TMU_reset();
   227     SCIF_reset();
   228     CCN_reset();
   229     MMU_reset();
   230 }
   232 void sh4_stop(void)
   233 {
   234     if(	sh4_use_translator ) {
   235         /* If we were running with the translator, update new_pc and in_delay_slot */
   236         sh4r.new_pc = sh4r.pc+2;
   237         sh4r.in_delay_slot = FALSE;
   238     }
   240 }
   242 /**
   243  * Execute a timeslice using translated code only (ie translate/execute loop)
   244  */
   245 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   246 {
   247     sh4r.slice_cycle = 0;
   249     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   250         sh4_sleep_run_slice(nanosecs);
   251     }
   253     /* Setup for sudden vm exits */
   254     switch( setjmp(sh4_exit_jmp_buf) ) {
   255     case CORE_EXIT_BREAKPOINT:
   256         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   257         /* fallthrough */
   258     case CORE_EXIT_HALT:
   259         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   260             TMU_run_slice( sh4r.slice_cycle );
   261             SCIF_run_slice( sh4r.slice_cycle );
   262             PMM_run_slice( sh4r.slice_cycle );
   263             dreamcast_stop();
   264             return sh4r.slice_cycle;
   265         }
   266     case CORE_EXIT_SYSRESET:
   267         dreamcast_reset();
   268         break;
   269     case CORE_EXIT_SLEEP:
   270         sh4_sleep_run_slice(nanosecs);
   271         break;  
   272     case CORE_EXIT_FLUSH_ICACHE:
   273         xlat_flush_cache();
   274         break;
   275     }
   277     sh4_running = TRUE;
   279     /* Execute the core's real slice */
   280 #ifdef SH4_TRANSLATOR
   281     if( sh4_use_translator ) {
   282         sh4_translate_run_slice(nanosecs);
   283     } else {
   284         sh4_emulate_run_slice(nanosecs);
   285     }
   286 #else
   287     sh4_emulate_run_slice(nanosecs);
   288 #endif
   290     /* And finish off the peripherals afterwards */
   292     sh4_running = FALSE;
   293     sh4_starting = FALSE;
   294     sh4r.slice_cycle = nanosecs;
   295     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   296         TMU_run_slice( nanosecs );
   297         SCIF_run_slice( nanosecs );
   298         PMM_run_slice( sh4r.slice_cycle );
   299     }
   300     return nanosecs;   
   301 }
   303 void sh4_core_exit( int exit_code )
   304 {
   305     if( sh4_running ) {
   306 #ifdef SH4_TRANSLATOR
   307         if( sh4_use_translator ) {
   308             if( exit_code == CORE_EXIT_EXCEPTION ) {
   309                 sh4_translate_exception_exit_recover();
   310             } else {
   311                 sh4_translate_exit_recover();
   312             }
   313         }
   314 #endif
   315         if( exit_code != CORE_EXIT_EXCEPTION &&
   316             exit_code != CORE_EXIT_BREAKPOINT ) {
   317             sh4_finalize_instruction();
   318         }
   319         // longjmp back into sh4_run_slice
   320         sh4_running = FALSE;
   321         longjmp(sh4_exit_jmp_buf, exit_code);
   322     }
   323 }
   325 void sh4_save_state( FILE *f )
   326 {
   327     if(	sh4_use_translator ) {
   328         /* If we were running with the translator, update new_pc and in_delay_slot */
   329         sh4r.new_pc = sh4r.pc+2;
   330         sh4r.in_delay_slot = FALSE;
   331     }
   333     fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   334     MMU_save_state( f );
   335     CCN_save_state( f );
   336     PMM_save_state( f );
   337     INTC_save_state( f );
   338     TMU_save_state( f );
   339     SCIF_save_state( f );
   340 }
   342 int sh4_load_state( FILE * f )
   343 {
   344     if(	sh4_use_translator ) {
   345         xlat_flush_cache();
   346     }
   347     fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   348     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   349     MMU_load_state( f );
   350     CCN_load_state( f );
   351     PMM_load_state( f );
   352     INTC_load_state( f );
   353     TMU_load_state( f );
   354     return SCIF_load_state( f );
   355 }
   357 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   358 {
   359     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   360     sh4_breakpoints[sh4_breakpoint_count].type = type;
   361     if( sh4_use_translator ) {
   362         xlat_invalidate_word( pc );
   363     }
   364     sh4_breakpoint_count++;
   365 }
   367 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   368 {
   369     int i;
   371     for( i=0; i<sh4_breakpoint_count; i++ ) {
   372         if( sh4_breakpoints[i].address == pc && 
   373                 sh4_breakpoints[i].type == type ) {
   374             while( ++i < sh4_breakpoint_count ) {
   375                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   376                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   377             }
   378             if( sh4_use_translator ) {
   379                 xlat_invalidate_word( pc );
   380             }
   381             sh4_breakpoint_count--;
   382             return TRUE;
   383         }
   384     }
   385     return FALSE;
   386 }
   388 int sh4_get_breakpoint( uint32_t pc )
   389 {
   390     int i;
   391     for( i=0; i<sh4_breakpoint_count; i++ ) {
   392         if( sh4_breakpoints[i].address == pc )
   393             return sh4_breakpoints[i].type;
   394     }
   395     return 0;
   396 }
   398 void sh4_set_pc( int pc )
   399 {
   400     sh4r.pc = pc;
   401     sh4r.new_pc = pc+2;
   402 }
   404 /**
   405  * Dump all SH4 core information for crash-dump purposes
   406  */
   407 void sh4_crashdump()
   408 {
   409     cpu_print_registers( stderr, &sh4_cpu_desc );
   410 #ifdef SH4_TRANSLATOR
   411     if( sh4_use_translator ) {
   412         sh4_translate_crashdump();
   413     } /* Nothing really to print for emu core */
   414 #endif
   415 }
   418 /******************************* Support methods ***************************/
   420 static void sh4_switch_banks( )
   421 {
   422     uint32_t tmp[8];
   424     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   425     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   426     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   427 }
   429 void FASTCALL sh4_switch_fr_banks()
   430 {
   431     int i;
   432     for( i=0; i<16; i++ ) {
   433         float tmp = sh4r.fr[0][i];
   434         sh4r.fr[0][i] = sh4r.fr[1][i];
   435         sh4r.fr[1][i] = tmp;
   436     }
   437 }
   439 void FASTCALL sh4_write_sr( uint32_t newval )
   440 {
   441     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   442     int newbank = (newval&SR_MDRB) == SR_MDRB;
   443     if( oldbank != newbank )
   444         sh4_switch_banks();
   445     sh4r.sr = newval & SR_MASK;
   446     sh4r.t = (newval&SR_T) ? 1 : 0;
   447     sh4r.s = (newval&SR_S) ? 1 : 0;
   448     sh4r.m = (newval&SR_M) ? 1 : 0;
   449     sh4r.q = (newval&SR_Q) ? 1 : 0;
   450     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   451     intc_mask_changed();
   452 }
   454 void FASTCALL sh4_write_fpscr( uint32_t newval )
   455 {
   456     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   457         sh4_switch_fr_banks();
   458     }
   459     sh4r.fpscr = newval & FPSCR_MASK;
   460     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   461 }
   463 uint32_t FASTCALL sh4_read_sr( void )
   464 {
   465     /* synchronize sh4r.sr with the various bitflags */
   466     sh4r.sr &= SR_MQSTMASK;
   467     if( sh4r.t ) sh4r.sr |= SR_T;
   468     if( sh4r.s ) sh4r.sr |= SR_S;
   469     if( sh4r.m ) sh4r.sr |= SR_M;
   470     if( sh4r.q ) sh4r.sr |= SR_Q;
   471     return sh4r.sr;
   472 }
   474 /**
   475  * Raise a CPU reset exception with the specified exception code.
   476  */
   477 void FASTCALL sh4_raise_reset( int code )
   478 {
   479     MMIO_WRITE(MMU,EXPEVT,code);
   480     sh4r.vbr = 0x00000000;
   481     sh4r.pc = 0xA0000000;
   482     sh4r.new_pc = sh4r.pc + 2;
   483     sh4r.in_delay_slot = 0;
   484     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)&(~SR_FD) );
   486     /* Peripheral manual reset (FIXME: incomplete) */
   487     INTC_reset();
   488     SCIF_reset();
   489     MMU_reset();
   490 }
   492 void FASTCALL sh4_raise_tlb_multihit( sh4vma_t vpn )
   493 {
   494     MMIO_WRITE( MMU, TEA, vpn );
   495     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   496     sh4_raise_reset( EXC_TLB_MULTI_HIT );
   497 }
   499 /**
   500  * Raise a general CPU exception for the specified exception code.
   501  * (NOT for TRAPA or TLB exceptions)
   502  */
   503 void FASTCALL sh4_raise_exception( int code )
   504 {
   505     if( sh4r.sr & SR_BL ) {
   506         sh4_raise_reset( EXC_MANUAL_RESET );
   507     } else {
   508         sh4r.spc = sh4r.pc;
   509         sh4r.ssr = sh4_read_sr();
   510         sh4r.sgr = sh4r.r[15];
   511         MMIO_WRITE(MMU,EXPEVT, code);
   512         sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   513         sh4r.new_pc = sh4r.pc + 2;
   514         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   515         sh4r.in_delay_slot = 0;
   516     }
   517 }
   519 void FASTCALL sh4_raise_trap( int trap )
   520 {
   521     MMIO_WRITE( MMU, TRA, trap<<2 );
   522     MMIO_WRITE( MMU, EXPEVT, EXC_TRAP );
   523     sh4r.spc = sh4r.pc;
   524     sh4r.ssr = sh4_read_sr();
   525     sh4r.sgr = sh4r.r[15];
   526     sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   527     sh4r.new_pc = sh4r.pc + 2;
   528     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   529     sh4r.in_delay_slot = 0;
   530 }
   532 void FASTCALL sh4_raise_tlb_exception( int code, sh4vma_t vpn )
   533 {
   534     MMIO_WRITE( MMU, TEA, vpn );
   535     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   536     MMIO_WRITE( MMU, EXPEVT, code );
   537     sh4r.spc = sh4r.pc;
   538     sh4r.ssr = sh4_read_sr();
   539     sh4r.sgr = sh4r.r[15];
   540     sh4r.pc = sh4r.vbr + EXV_TLBMISS;
   541     sh4r.new_pc = sh4r.pc + 2;
   542     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   543     sh4r.in_delay_slot = 0;
   544 }
   546 void FASTCALL sh4_accept_interrupt( void )
   547 {
   548     uint32_t code = intc_accept_interrupt();
   549     MMIO_WRITE( MMU, INTEVT, code );
   550     sh4r.ssr = sh4_read_sr();
   551     sh4r.spc = sh4r.pc;
   552     sh4r.sgr = sh4r.r[15];
   553     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   554     sh4r.pc = sh4r.vbr + 0x600;
   555     sh4r.new_pc = sh4r.pc + 2;
   556     sh4r.in_delay_slot = 0;
   557 }
   559 void FASTCALL signsat48( void )
   560 {
   561     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   562         sh4r.mac = 0xFFFF800000000000LL;
   563     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   564         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   565 }
   567 void FASTCALL sh4_fsca( uint32_t anglei, float *fr )
   568 {
   569     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   570     *fr++ = cosf(angle);
   571     *fr = sinf(angle);
   572 }
   574 /**
   575  * Enter sleep mode (eg by executing a SLEEP instruction).
   576  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   577  * are up to date.
   578  */
   579 void FASTCALL sh4_sleep(void)
   580 {
   581     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   582         sh4r.sh4_state = SH4_STATE_STANDBY;
   583         /* Bring all running peripheral modules up to date, and then halt them. */
   584         TMU_run_slice( sh4r.slice_cycle );
   585         SCIF_run_slice( sh4r.slice_cycle );
   586         PMM_run_slice( sh4r.slice_cycle );
   587     } else {
   588         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   589             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   590             /* Halt DMAC but other peripherals still running */
   592         } else {
   593             sh4r.sh4_state = SH4_STATE_SLEEP;
   594         }
   595     }
   596     sh4_core_exit( CORE_EXIT_SLEEP );
   597 }
   599 /**
   600  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   601  * and restarts any peripheral devices that were stopped.
   602  */
   603 void sh4_wakeup(void)
   604 {
   605     switch( sh4r.sh4_state ) {
   606     case SH4_STATE_STANDBY:
   607         break;
   608     case SH4_STATE_DEEP_SLEEP:
   609         break;
   610     case SH4_STATE_SLEEP:
   611         break;
   612     }
   613     sh4r.sh4_state = SH4_STATE_RUNNING;
   614 }
   616 /**
   617  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   618  * Returns when either the SH4 wakes up (interrupt received) or the end of
   619  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   620  * returns the same value.
   621  */
   622 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   623 {
   624     int sleep_state = sh4r.sh4_state;
   625     assert( sleep_state != SH4_STATE_RUNNING );
   627     while( sh4r.event_pending < nanosecs ) {
   628         sh4r.slice_cycle = sh4r.event_pending;
   629         if( sh4r.event_types & PENDING_EVENT ) {
   630             event_execute();
   631         }
   632         if( sh4r.event_types & PENDING_IRQ ) {
   633             sh4_wakeup();
   634             return sh4r.slice_cycle;
   635         }
   636     }
   637     sh4r.slice_cycle = nanosecs;
   638     return sh4r.slice_cycle;
   639 }
   642 /**
   643  * Compute the matrix tranform of fv given the matrix xf.
   644  * Both fv and xf are word-swapped as per the sh4r.fr banks
   645  */
   646 void FASTCALL sh4_ftrv( float *target )
   647 {
   648     float fv[4] = { target[1], target[0], target[3], target[2] };
   649     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   650     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   651     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   652     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   653     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   654     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   655     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   656     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   657 }
   659 gboolean sh4_has_page( sh4vma_t vma )
   660 {
   661     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   662     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   663 }
   665 /**
   666  * Go through ext_address_space page by page
   667  */
   668 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length )
   669 {
   670     /* Quick and very dirty */
   671     unsigned char *region = mem_get_region(addr);
   672     if( region == NULL ) {
   673         memset( buf, 0, length );
   674     } else {
   675         memcpy( buf, region, length );
   676     }
   677     return length;
   678 }
   680 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length )
   681 {
   682     unsigned char *region = mem_get_region(addr);
   683     if( region != NULL ) {
   684         memcpy( region, buf, length );
   685     }
   686     return length;
   687 }
   689 /**
   690  * Read virtual memory - for now just go 1K at a time 
   691  */
   692 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length )
   693 {
   694     if( IS_TLB_ENABLED() ) {
   695         size_t read_len = 0;
   696         while( length > 0 ) {
   697             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   698             if( phys == MMU_VMA_ERROR )
   699                 break;
   700             int next_len = 1024 - (phys&0x000003FF);
   701             if( next_len >= length ) {
   702                 next_len = length;
   703             }
   704             sh4_debug_read_phys( buf, phys, length );
   705             buf += next_len;
   706             addr += next_len;
   707             read_len += next_len; 
   708             length -= next_len;
   709         }
   710         return read_len;
   711     } else {
   712         return sh4_debug_read_phys( buf, addr, length );
   713     }
   714 }
   716 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length )
   717 {
   718     if( IS_TLB_ENABLED() ) {
   719         size_t read_len = 0;
   720         while( length > 0 ) {
   721             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   722             if( phys == MMU_VMA_ERROR )
   723                 break;
   724             int next_len = 1024 - (phys&0x000003FF);
   725             if( next_len >= length ) {
   726                 next_len = length;
   727             }
   728             sh4_debug_write_phys( phys, buf, length );
   729             buf += next_len;
   730             addr += next_len;
   731             read_len += next_len; 
   732             length -= next_len;
   733         }
   734         return read_len;
   735     } else {
   736         return sh4_debug_write_phys( addr, buf, length );
   737     }
   738 }
.