Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 1091:186558374345
prev1071:182cfe43c09e
next1112:4cac5e474d4c
author nkeynes
date Tue Dec 15 08:46:37 2009 +1000 (14 years ago)
permissions -rw-r--r--
last change Add side-by-side x86+sh4 disassembly output
Print SH4 state information and disassembly of the current block when
crashing.
Fix delay slot instruction in conditional branch not being marked as a
delay-slot instruction in the branch-not-taken path.
Rename REG_* defines in cpu.h to avoid conflict with translation defs
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "cpu.h"
    27 #include "mem.h"
    28 #include "clock.h"
    29 #include "eventq.h"
    30 #include "syscall.h"
    31 #include "sh4/intc.h"
    32 #include "sh4/mmu.h"
    33 #include "sh4/sh4core.h"
    34 #include "sh4/sh4dasm.h"
    35 #include "sh4/sh4mmio.h"
    36 #include "sh4/sh4stat.h"
    37 #include "sh4/sh4trans.h"
    38 #include "xlat/xltcache.h"
    40 #ifndef M_PI
    41 #define M_PI        3.14159265358979323846264338327950288
    42 #endif
    44 void sh4_init( void );
    45 void sh4_poweron_reset( void );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length );
    51 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length );
    52 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length );
    53 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length );
    55 uint32_t sh4_run_slice( uint32_t );
    57 /* Note: this must match GDB's ordering */
    58 const struct reg_desc_struct sh4_reg_map[] = 
    59   { {"R0", REG_TYPE_INT, &sh4r.r[0]}, {"R1", REG_TYPE_INT, &sh4r.r[1]},
    60     {"R2", REG_TYPE_INT, &sh4r.r[2]}, {"R3", REG_TYPE_INT, &sh4r.r[3]},
    61     {"R4", REG_TYPE_INT, &sh4r.r[4]}, {"R5", REG_TYPE_INT, &sh4r.r[5]},
    62     {"R6", REG_TYPE_INT, &sh4r.r[6]}, {"R7", REG_TYPE_INT, &sh4r.r[7]},
    63     {"R8", REG_TYPE_INT, &sh4r.r[8]}, {"R9", REG_TYPE_INT, &sh4r.r[9]},
    64     {"R10",REG_TYPE_INT, &sh4r.r[10]}, {"R11",REG_TYPE_INT, &sh4r.r[11]},
    65     {"R12",REG_TYPE_INT, &sh4r.r[12]}, {"R13",REG_TYPE_INT, &sh4r.r[13]},
    66     {"R14",REG_TYPE_INT, &sh4r.r[14]}, {"R15",REG_TYPE_INT, &sh4r.r[15]},
    67     {"PC", REG_TYPE_INT, &sh4r.pc}, {"PR", REG_TYPE_INT, &sh4r.pr},
    68     {"GBR", REG_TYPE_INT, &sh4r.gbr}, {"VBR",REG_TYPE_INT, &sh4r.vbr}, 
    69     {"MACH",REG_TYPE_INT, ((uint32_t *)&sh4r.mac)+1}, {"MACL",REG_TYPE_INT, &sh4r.mac},
    70     {"SR", REG_TYPE_INT, &sh4r.sr},
    71     {"FPUL", REG_TYPE_INT, &sh4r.fpul.i}, {"FPSCR", REG_TYPE_INT, &sh4r.fpscr},
    73     {"FR0", REG_TYPE_FLOAT, &sh4r.fr[0][1] },{"FR1", REG_TYPE_FLOAT, &sh4r.fr[0][0]},
    74     {"FR2", REG_TYPE_FLOAT, &sh4r.fr[0][3] },{"FR3", REG_TYPE_FLOAT, &sh4r.fr[0][2]},
    75     {"FR4", REG_TYPE_FLOAT, &sh4r.fr[0][5] },{"FR5", REG_TYPE_FLOAT, &sh4r.fr[0][4]},
    76     {"FR6", REG_TYPE_FLOAT, &sh4r.fr[0][7] },{"FR7", REG_TYPE_FLOAT, &sh4r.fr[0][6]},
    77     {"FR8", REG_TYPE_FLOAT, &sh4r.fr[0][9] },{"FR9", REG_TYPE_FLOAT, &sh4r.fr[0][8]},
    78     {"FR10", REG_TYPE_FLOAT, &sh4r.fr[0][11] },{"FR11", REG_TYPE_FLOAT, &sh4r.fr[0][10]},
    79     {"FR12", REG_TYPE_FLOAT, &sh4r.fr[0][13] },{"FR13", REG_TYPE_FLOAT, &sh4r.fr[0][12]},
    80     {"FR14", REG_TYPE_FLOAT, &sh4r.fr[0][15] },{"FR15", REG_TYPE_FLOAT, &sh4r.fr[0][14]},
    82     {"SSR",REG_TYPE_INT, &sh4r.ssr}, {"SPC", REG_TYPE_INT, &sh4r.spc},
    84     {"R0B0", REG_TYPE_INT, NULL}, {"R1B0", REG_TYPE_INT, NULL},
    85     {"R2B0", REG_TYPE_INT, NULL}, {"R3B0", REG_TYPE_INT, NULL},
    86     {"R4B0", REG_TYPE_INT, NULL}, {"R5B0", REG_TYPE_INT, NULL},
    87     {"R6B0", REG_TYPE_INT, NULL}, {"R7B0", REG_TYPE_INT, NULL},
    88     {"R0B1", REG_TYPE_INT, NULL}, {"R1B1", REG_TYPE_INT, NULL},
    89     {"R2B1", REG_TYPE_INT, NULL}, {"R3B1", REG_TYPE_INT, NULL},
    90     {"R4B1", REG_TYPE_INT, NULL}, {"R5B1", REG_TYPE_INT, NULL},
    91     {"R6B1", REG_TYPE_INT, NULL}, {"R7B1", REG_TYPE_INT, NULL},
    93     {"SGR",REG_TYPE_INT, &sh4r.sgr}, {"DBR", REG_TYPE_INT, &sh4r.dbr},
    95     {"XF0", REG_TYPE_FLOAT, &sh4r.fr[1][1] },{"XF1", REG_TYPE_FLOAT, &sh4r.fr[1][0]},
    96     {"XF2", REG_TYPE_FLOAT, &sh4r.fr[1][3] },{"XF3", REG_TYPE_FLOAT, &sh4r.fr[1][2]},
    97     {"XF4", REG_TYPE_FLOAT, &sh4r.fr[1][5] },{"XF5", REG_TYPE_FLOAT, &sh4r.fr[1][4]},
    98     {"XF6", REG_TYPE_FLOAT, &sh4r.fr[1][7] },{"XF7", REG_TYPE_FLOAT, &sh4r.fr[1][6]},
    99     {"XF8", REG_TYPE_FLOAT, &sh4r.fr[1][9] },{"XF9", REG_TYPE_FLOAT, &sh4r.fr[1][8]},
   100     {"XF10", REG_TYPE_FLOAT, &sh4r.fr[1][11] },{"XF11", REG_TYPE_FLOAT, &sh4r.fr[1][10]},
   101     {"XF12", REG_TYPE_FLOAT, &sh4r.fr[1][13] },{"XF13", REG_TYPE_FLOAT, &sh4r.fr[1][12]},
   102     {"XF14", REG_TYPE_FLOAT, &sh4r.fr[1][15] },{"XF15", REG_TYPE_FLOAT, &sh4r.fr[1][14]},
   104     {NULL, 0, NULL} };
   106 void *sh4_get_register( int reg )
   107 {
   108     if( reg < 0 || reg >= 94 ) {
   109         return NULL;
   110     } else if( reg < 43 ) {
   111         return sh4_reg_map[reg].value;
   112     } else if( reg < 51 ) {
   113         /* r0b0..r7b0 */
   114         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   115             /* bank 1 is primary */
   116             return &sh4r.r_bank[reg-43];
   117         } else {
   118             return &sh4r.r[reg-43];
   119         }
   120     } else if( reg < 59 ) {
   121         /* r0b1..r7b1 */
   122         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   123             /* bank 1 is primary */
   124             return &sh4r.r[reg-43];
   125         } else {
   126             return &sh4r.r_bank[reg-43];
   127         }
   128     } else {
   129         return NULL; /* not supported at the moment */
   130     }
   131 }
   134 const struct cpu_desc_struct sh4_cpu_desc = 
   135     { "SH4", sh4_disasm_instruction, sh4_get_register, sh4_has_page,
   136             sh4_debug_read_phys, sh4_debug_write_phys, sh4_debug_read_vma, sh4_debug_write_vma,
   137             sh4_execute_instruction, 
   138       sh4_set_breakpoint, sh4_clear_breakpoint, sh4_get_breakpoint, 2,
   139       (char *)&sh4r, sizeof(sh4r), sh4_reg_map, 23, 59,
   140       &sh4r.pc };
   142 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, 
   143         sh4_start, sh4_run_slice, sh4_stop,
   144         sh4_save_state, sh4_load_state };
   146 struct sh4_registers sh4r __attribute__((aligned(16)));
   147 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
   148 int sh4_breakpoint_count = 0;
   150 gboolean sh4_starting = FALSE;
   151 static gboolean sh4_use_translator = FALSE;
   152 static jmp_buf sh4_exit_jmp_buf;
   153 static gboolean sh4_running = FALSE;
   154 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
   156 void sh4_translate_set_enabled( gboolean use )
   157 {
   158     // No-op if the translator was not built
   159 #ifdef SH4_TRANSLATOR
   160     if( use ) {
   161         sh4_translate_init();
   162     }
   163     sh4_use_translator = use;
   164 #endif
   165 }
   167 gboolean sh4_translate_is_enabled()
   168 {
   169     return sh4_use_translator;
   170 }
   172 void sh4_init(void)
   173 {
   174     register_io_regions( mmio_list_sh4mmio );
   175     MMU_init();
   176     TMU_init();
   177     xlat_cache_init();
   178     sh4_poweron_reset();
   179 #ifdef ENABLE_SH4STATS
   180     sh4_stats_reset();
   181 #endif
   182 }
   184 void sh4_start(void)
   185 {
   186     sh4_starting = TRUE;
   187 }
   189 void sh4_poweron_reset(void)
   190 {
   191     /* zero everything out, for the sake of having a consistent state. */
   192     memset( &sh4r, 0, sizeof(sh4r) );
   193     if(	sh4_use_translator ) {
   194         xlat_flush_cache();
   195     }
   197     /* Resume running if we were halted */
   198     sh4r.sh4_state = SH4_STATE_RUNNING;
   200     sh4r.pc    = 0xA0000000;
   201     sh4r.new_pc= 0xA0000002;
   202     sh4r.vbr   = 0x00000000;
   203     sh4r.fpscr = 0x00040001;
   204     sh4_write_sr(0x700000F0);
   206     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   207     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   209     /* Peripheral modules */
   210     CPG_reset();
   211     INTC_reset();
   212     PMM_reset();
   213     TMU_reset();
   214     SCIF_reset();
   215     CCN_reset();
   216     MMU_reset();
   217 }
   219 void sh4_stop(void)
   220 {
   221     if(	sh4_use_translator ) {
   222         /* If we were running with the translator, update new_pc and in_delay_slot */
   223         sh4r.new_pc = sh4r.pc+2;
   224         sh4r.in_delay_slot = FALSE;
   225     }
   227 }
   229 /**
   230  * Execute a timeslice using translated code only (ie translate/execute loop)
   231  */
   232 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   233 {
   234     sh4r.slice_cycle = 0;
   236     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   237         sh4_sleep_run_slice(nanosecs);
   238     }
   240     /* Setup for sudden vm exits */
   241     switch( setjmp(sh4_exit_jmp_buf) ) {
   242     case CORE_EXIT_BREAKPOINT:
   243         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   244         /* fallthrough */
   245     case CORE_EXIT_HALT:
   246         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   247             TMU_run_slice( sh4r.slice_cycle );
   248             SCIF_run_slice( sh4r.slice_cycle );
   249             PMM_run_slice( sh4r.slice_cycle );
   250             dreamcast_stop();
   251             return sh4r.slice_cycle;
   252         }
   253     case CORE_EXIT_SYSRESET:
   254         dreamcast_reset();
   255         break;
   256     case CORE_EXIT_SLEEP:
   257         sh4_sleep_run_slice(nanosecs);
   258         break;  
   259     case CORE_EXIT_FLUSH_ICACHE:
   260         xlat_flush_cache();
   261         break;
   262     }
   264     sh4_running = TRUE;
   266     /* Execute the core's real slice */
   267 #ifdef SH4_TRANSLATOR
   268     if( sh4_use_translator ) {
   269         sh4_translate_run_slice(nanosecs);
   270     } else {
   271         sh4_emulate_run_slice(nanosecs);
   272     }
   273 #else
   274     sh4_emulate_run_slice(nanosecs);
   275 #endif
   277     /* And finish off the peripherals afterwards */
   279     sh4_running = FALSE;
   280     sh4_starting = FALSE;
   281     sh4r.slice_cycle = nanosecs;
   282     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   283         TMU_run_slice( nanosecs );
   284         SCIF_run_slice( nanosecs );
   285         PMM_run_slice( sh4r.slice_cycle );
   286     }
   287     return nanosecs;   
   288 }
   290 void sh4_core_exit( int exit_code )
   291 {
   292     if( sh4_running ) {
   293 #ifdef SH4_TRANSLATOR
   294         if( sh4_use_translator ) {
   295             if( exit_code == CORE_EXIT_EXCEPTION ) {
   296                 sh4_translate_exception_exit_recover();
   297             } else {
   298                 sh4_translate_exit_recover();
   299             }
   300         }
   301 #endif
   302         if( exit_code != CORE_EXIT_EXCEPTION &&
   303             exit_code != CORE_EXIT_BREAKPOINT ) {
   304             sh4_finalize_instruction();
   305         }
   306         // longjmp back into sh4_run_slice
   307         sh4_running = FALSE;
   308         longjmp(sh4_exit_jmp_buf, exit_code);
   309     }
   310 }
   312 void sh4_save_state( FILE *f )
   313 {
   314     if(	sh4_use_translator ) {
   315         /* If we were running with the translator, update new_pc and in_delay_slot */
   316         sh4r.new_pc = sh4r.pc+2;
   317         sh4r.in_delay_slot = FALSE;
   318     }
   320     fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   321     MMU_save_state( f );
   322     CCN_save_state( f );
   323     PMM_save_state( f );
   324     INTC_save_state( f );
   325     TMU_save_state( f );
   326     SCIF_save_state( f );
   327 }
   329 int sh4_load_state( FILE * f )
   330 {
   331     if(	sh4_use_translator ) {
   332         xlat_flush_cache();
   333     }
   334     fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   335     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   336     MMU_load_state( f );
   337     CCN_load_state( f );
   338     PMM_load_state( f );
   339     INTC_load_state( f );
   340     TMU_load_state( f );
   341     return SCIF_load_state( f );
   342 }
   344 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   345 {
   346     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   347     sh4_breakpoints[sh4_breakpoint_count].type = type;
   348     if( sh4_use_translator ) {
   349         xlat_invalidate_word( pc );
   350     }
   351     sh4_breakpoint_count++;
   352 }
   354 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   355 {
   356     int i;
   358     for( i=0; i<sh4_breakpoint_count; i++ ) {
   359         if( sh4_breakpoints[i].address == pc && 
   360                 sh4_breakpoints[i].type == type ) {
   361             while( ++i < sh4_breakpoint_count ) {
   362                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   363                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   364             }
   365             if( sh4_use_translator ) {
   366                 xlat_invalidate_word( pc );
   367             }
   368             sh4_breakpoint_count--;
   369             return TRUE;
   370         }
   371     }
   372     return FALSE;
   373 }
   375 int sh4_get_breakpoint( uint32_t pc )
   376 {
   377     int i;
   378     for( i=0; i<sh4_breakpoint_count; i++ ) {
   379         if( sh4_breakpoints[i].address == pc )
   380             return sh4_breakpoints[i].type;
   381     }
   382     return 0;
   383 }
   385 void sh4_set_pc( int pc )
   386 {
   387     sh4r.pc = pc;
   388     sh4r.new_pc = pc+2;
   389 }
   391 /**
   392  * Dump all SH4 core information for crash-dump purposes
   393  */
   394 void sh4_crashdump()
   395 {
   396     cpu_print_registers( stderr, &sh4_cpu_desc );
   397 #ifdef SH4_TRANSLATOR
   398     if( sh4_use_translator ) {
   399         sh4_translate_crashdump();
   400     } /* Nothing really to print for emu core */
   401 #endif
   402 }
   405 /******************************* Support methods ***************************/
   407 static void sh4_switch_banks( )
   408 {
   409     uint32_t tmp[8];
   411     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   412     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   413     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   414 }
   416 void FASTCALL sh4_switch_fr_banks()
   417 {
   418     int i;
   419     for( i=0; i<16; i++ ) {
   420         float tmp = sh4r.fr[0][i];
   421         sh4r.fr[0][i] = sh4r.fr[1][i];
   422         sh4r.fr[1][i] = tmp;
   423     }
   424 }
   426 void FASTCALL sh4_write_sr( uint32_t newval )
   427 {
   428     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   429     int newbank = (newval&SR_MDRB) == SR_MDRB;
   430     if( oldbank != newbank )
   431         sh4_switch_banks();
   432     sh4r.sr = newval & SR_MASK;
   433     sh4r.t = (newval&SR_T) ? 1 : 0;
   434     sh4r.s = (newval&SR_S) ? 1 : 0;
   435     sh4r.m = (newval&SR_M) ? 1 : 0;
   436     sh4r.q = (newval&SR_Q) ? 1 : 0;
   437     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   438     intc_mask_changed();
   439 }
   441 void FASTCALL sh4_write_fpscr( uint32_t newval )
   442 {
   443     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   444         sh4_switch_fr_banks();
   445     }
   446     sh4r.fpscr = newval & FPSCR_MASK;
   447     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   448 }
   450 uint32_t FASTCALL sh4_read_sr( void )
   451 {
   452     /* synchronize sh4r.sr with the various bitflags */
   453     sh4r.sr &= SR_MQSTMASK;
   454     if( sh4r.t ) sh4r.sr |= SR_T;
   455     if( sh4r.s ) sh4r.sr |= SR_S;
   456     if( sh4r.m ) sh4r.sr |= SR_M;
   457     if( sh4r.q ) sh4r.sr |= SR_Q;
   458     return sh4r.sr;
   459 }
   461 /**
   462  * Raise a CPU reset exception with the specified exception code.
   463  */
   464 void FASTCALL sh4_raise_reset( int code )
   465 {
   466     MMIO_WRITE(MMU,EXPEVT,code);
   467     sh4r.vbr = 0x00000000;
   468     sh4r.pc = 0xA0000000;
   469     sh4r.new_pc = sh4r.pc + 2;
   470     sh4r.in_delay_slot = 0;
   471     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)&(~SR_FD) );
   473     /* Peripheral manual reset (FIXME: incomplete) */
   474     INTC_reset();
   475     SCIF_reset();
   476     MMU_reset();
   477 }
   479 void FASTCALL sh4_raise_tlb_multihit( sh4vma_t vpn )
   480 {
   481     MMIO_WRITE( MMU, TEA, vpn );
   482     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   483     sh4_raise_reset( EXC_TLB_MULTI_HIT );
   484 }
   486 /**
   487  * Raise a general CPU exception for the specified exception code.
   488  * (NOT for TRAPA or TLB exceptions)
   489  */
   490 void FASTCALL sh4_raise_exception( int code )
   491 {
   492     if( sh4r.sr & SR_BL ) {
   493         sh4_raise_reset( EXC_MANUAL_RESET );
   494     } else {
   495         sh4r.spc = sh4r.pc;
   496         sh4r.ssr = sh4_read_sr();
   497         sh4r.sgr = sh4r.r[15];
   498         MMIO_WRITE(MMU,EXPEVT, code);
   499         sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   500         sh4r.new_pc = sh4r.pc + 2;
   501         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   502         sh4r.in_delay_slot = 0;
   503     }
   504 }
   506 void FASTCALL sh4_raise_trap( int trap )
   507 {
   508     MMIO_WRITE( MMU, TRA, trap<<2 );
   509     MMIO_WRITE( MMU, EXPEVT, EXC_TRAP );
   510     sh4r.spc = sh4r.pc;
   511     sh4r.ssr = sh4_read_sr();
   512     sh4r.sgr = sh4r.r[15];
   513     sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   514     sh4r.new_pc = sh4r.pc + 2;
   515     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   516     sh4r.in_delay_slot = 0;
   517 }
   519 void FASTCALL sh4_raise_tlb_exception( int code, sh4vma_t vpn )
   520 {
   521     MMIO_WRITE( MMU, TEA, vpn );
   522     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   523     MMIO_WRITE( MMU, EXPEVT, code );
   524     sh4r.spc = sh4r.pc;
   525     sh4r.ssr = sh4_read_sr();
   526     sh4r.sgr = sh4r.r[15];
   527     sh4r.pc = sh4r.vbr + EXV_TLBMISS;
   528     sh4r.new_pc = sh4r.pc + 2;
   529     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   530     sh4r.in_delay_slot = 0;
   531 }
   533 void FASTCALL sh4_accept_interrupt( void )
   534 {
   535     uint32_t code = intc_accept_interrupt();
   536     MMIO_WRITE( MMU, INTEVT, code );
   537     sh4r.ssr = sh4_read_sr();
   538     sh4r.spc = sh4r.pc;
   539     sh4r.sgr = sh4r.r[15];
   540     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   541     sh4r.pc = sh4r.vbr + 0x600;
   542     sh4r.new_pc = sh4r.pc + 2;
   543     sh4r.in_delay_slot = 0;
   544 }
   546 void FASTCALL signsat48( void )
   547 {
   548     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   549         sh4r.mac = 0xFFFF800000000000LL;
   550     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   551         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   552 }
   554 void FASTCALL sh4_fsca( uint32_t anglei, float *fr )
   555 {
   556     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   557     *fr++ = cosf(angle);
   558     *fr = sinf(angle);
   559 }
   561 /**
   562  * Enter sleep mode (eg by executing a SLEEP instruction).
   563  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   564  * are up to date.
   565  */
   566 void FASTCALL sh4_sleep(void)
   567 {
   568     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   569         sh4r.sh4_state = SH4_STATE_STANDBY;
   570         /* Bring all running peripheral modules up to date, and then halt them. */
   571         TMU_run_slice( sh4r.slice_cycle );
   572         SCIF_run_slice( sh4r.slice_cycle );
   573         PMM_run_slice( sh4r.slice_cycle );
   574     } else {
   575         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   576             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   577             /* Halt DMAC but other peripherals still running */
   579         } else {
   580             sh4r.sh4_state = SH4_STATE_SLEEP;
   581         }
   582     }
   583     sh4_core_exit( CORE_EXIT_SLEEP );
   584 }
   586 /**
   587  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   588  * and restarts any peripheral devices that were stopped.
   589  */
   590 void sh4_wakeup(void)
   591 {
   592     switch( sh4r.sh4_state ) {
   593     case SH4_STATE_STANDBY:
   594         break;
   595     case SH4_STATE_DEEP_SLEEP:
   596         break;
   597     case SH4_STATE_SLEEP:
   598         break;
   599     }
   600     sh4r.sh4_state = SH4_STATE_RUNNING;
   601 }
   603 /**
   604  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   605  * Returns when either the SH4 wakes up (interrupt received) or the end of
   606  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   607  * returns the same value.
   608  */
   609 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   610 {
   611     int sleep_state = sh4r.sh4_state;
   612     assert( sleep_state != SH4_STATE_RUNNING );
   614     while( sh4r.event_pending < nanosecs ) {
   615         sh4r.slice_cycle = sh4r.event_pending;
   616         if( sh4r.event_types & PENDING_EVENT ) {
   617             event_execute();
   618         }
   619         if( sh4r.event_types & PENDING_IRQ ) {
   620             sh4_wakeup();
   621             return sh4r.slice_cycle;
   622         }
   623     }
   624     sh4r.slice_cycle = nanosecs;
   625     return sh4r.slice_cycle;
   626 }
   629 /**
   630  * Compute the matrix tranform of fv given the matrix xf.
   631  * Both fv and xf are word-swapped as per the sh4r.fr banks
   632  */
   633 void FASTCALL sh4_ftrv( float *target )
   634 {
   635     float fv[4] = { target[1], target[0], target[3], target[2] };
   636     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   637     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   638     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   639     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   640     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   641     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   642     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   643     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   644 }
   646 gboolean sh4_has_page( sh4vma_t vma )
   647 {
   648     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   649     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   650 }
   652 /**
   653  * Go through ext_address_space page by page
   654  */
   655 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length )
   656 {
   657     /* Quick and very dirty */
   658     unsigned char *region = mem_get_region(addr);
   659     if( region == NULL ) {
   660         memset( buf, 0, length );
   661     } else {
   662         memcpy( buf, region, length );
   663     }
   664     return length;
   665 }
   667 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length )
   668 {
   669     unsigned char *region = mem_get_region(addr);
   670     if( region != NULL ) {
   671         memcpy( region, buf, length );
   672     }
   673     return length;
   674 }
   676 /**
   677  * Read virtual memory - for now just go 1K at a time 
   678  */
   679 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length )
   680 {
   681     if( IS_TLB_ENABLED() ) {
   682         size_t read_len = 0;
   683         while( length > 0 ) {
   684             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   685             if( phys == MMU_VMA_ERROR )
   686                 break;
   687             int next_len = 1024 - (phys&0x000003FF);
   688             if( next_len >= length ) {
   689                 next_len = length;
   690             }
   691             sh4_debug_read_phys( buf, phys, length );
   692             buf += next_len;
   693             addr += next_len;
   694             read_len += next_len; 
   695             length -= next_len;
   696         }
   697         return read_len;
   698     } else {
   699         return sh4_debug_read_phys( buf, addr, length );
   700     }
   701 }
   703 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length )
   704 {
   705     if( IS_TLB_ENABLED() ) {
   706         size_t read_len = 0;
   707         while( length > 0 ) {
   708             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   709             if( phys == MMU_VMA_ERROR )
   710                 break;
   711             int next_len = 1024 - (phys&0x000003FF);
   712             if( next_len >= length ) {
   713                 next_len = length;
   714             }
   715             sh4_debug_write_phys( phys, buf, length );
   716             buf += next_len;
   717             addr += next_len;
   718             read_len += next_len; 
   719             length -= next_len;
   720         }
   721         return read_len;
   722     } else {
   723         return sh4_debug_write_phys( addr, buf, length );
   724     }
   725 }
.