Search
lxdream.org :: lxdream/src/sh4/sh4core.in
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4core.in
changeset 1231:d63c808ddcd3
prev1217:677b1d85f1b4
prev1230:64a91ef571fc
author nkeynes
date Tue Feb 28 17:25:26 2012 +1000 (12 years ago)
permissions -rw-r--r--
last change Implement display output for the GLES2 case (no fixed function
rendering)
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 emulation core, and parent module for all the SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <assert.h>
    22 #include <math.h>
    23 #include "dream.h"
    24 #include "dreamcast.h"
    25 #include "eventq.h"
    26 #include "mem.h"
    27 #include "clock.h"
    28 #include "syscall.h"
    29 #include "sh4/sh4core.h"
    30 #include "sh4/sh4mmio.h"
    31 #include "sh4/sh4stat.h"
    32 #include "sh4/mmu.h"
    34 #define SH4_CALLTRACE 1
    36 #define MAX_INT 0x7FFFFFFF
    37 #define MIN_INT 0x80000000
    38 #define MAX_INTF 2147483647.0
    39 #define MIN_INTF -2147483648.0
    41 /********************** SH4 Module Definition ****************************/
    43 uint32_t sh4_emulate_run_slice( uint32_t nanosecs ) 
    44 {
    45     int i;
    47     if( sh4_breakpoint_count == 0 ) {
    48 	for( ; sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
    49 	    if( SH4_EVENT_PENDING() ) {
    50 	        sh4_handle_pending_events();
    51 	    }
    52 	    if( !sh4_execute_instruction() ) {
    53 		break;
    54 	    }
    55 	}
    56     } else {
    57 	for( ;sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
    58 	    if( SH4_EVENT_PENDING() ) {
    59 	        sh4_handle_pending_events();
    60 	    }
    62 	    if( !sh4_execute_instruction() )
    63 		break;
    64 #ifdef ENABLE_DEBUG_MODE
    65 	    for( i=0; i<sh4_breakpoint_count; i++ ) {
    66 		if( sh4_breakpoints[i].address == sh4r.pc ) {
    67 		    break;
    68 		}
    69 	    }
    70 	    if( i != sh4_breakpoint_count ) {
    71 	    	sh4_core_exit( CORE_EXIT_BREAKPOINT );
    72 	    }
    73 #endif	
    74 	}
    75     }
    77     /* If we aborted early, but the cpu is still technically running,
    78      * we're doing a hard abort - cut the timeslice back to what we
    79      * actually executed
    80      */
    81     if( sh4r.slice_cycle != nanosecs && sh4r.sh4_state == SH4_STATE_RUNNING ) {
    82 	nanosecs = sh4r.slice_cycle;
    83     }
    84     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
    85 	TMU_run_slice( nanosecs );
    86 	SCIF_run_slice( nanosecs );
    87     }
    88     return nanosecs;
    89 }
    91 /********************** SH4 emulation core  ****************************/
    93 #if(SH4_CALLTRACE == 1)
    94 #define MAX_CALLSTACK 32
    95 static struct call_stack {
    96     sh4addr_t call_addr;
    97     sh4addr_t target_addr;
    98     sh4addr_t stack_pointer;
    99 } call_stack[MAX_CALLSTACK];
   101 static int call_stack_depth = 0;
   102 int sh4_call_trace_on = 0;
   104 static inline void trace_call( sh4addr_t source, sh4addr_t dest ) 
   105 {
   106     if( call_stack_depth < MAX_CALLSTACK ) {
   107 	call_stack[call_stack_depth].call_addr = source;
   108 	call_stack[call_stack_depth].target_addr = dest;
   109 	call_stack[call_stack_depth].stack_pointer = sh4r.r[15];
   110     }
   111     call_stack_depth++;
   112 }
   114 static inline void trace_return( sh4addr_t source, sh4addr_t dest )
   115 {
   116     if( call_stack_depth > 0 ) {
   117 	call_stack_depth--;
   118     }
   119 }
   121 void fprint_stack_trace( FILE *f )
   122 {
   123     int i = call_stack_depth -1;
   124     if( i >= MAX_CALLSTACK )
   125 	i = MAX_CALLSTACK - 1;
   126     for( ; i >= 0; i-- ) {
   127 	fprintf( f, "%d. Call from %08X => %08X, SP=%08X\n", 
   128 		 (call_stack_depth - i), call_stack[i].call_addr,
   129 		 call_stack[i].target_addr, call_stack[i].stack_pointer );
   130     }
   131 }
   133 #define TRACE_CALL( source, dest ) trace_call(source, dest)
   134 #define TRACE_RETURN( source, dest ) trace_return(source, dest)
   135 #else
   136 #define TRACE_CALL( dest, rts ) 
   137 #define TRACE_RETURN( source, dest )
   138 #endif
   140 static gboolean FASTCALL sh4_raise_slot_exception( int normal_code, int slot_code ) {
   141     if( sh4r.in_delay_slot ) {
   142         sh4_raise_exception(slot_code);
   143     } else {
   144         sh4_raise_exception(normal_code);
   145     }
   146     return TRUE;
   147 }
   150 #define CHECKPRIV() if( !IS_SH4_PRIVMODE() ) { return sh4_raise_slot_exception( EXC_ILLEGAL, EXC_SLOT_ILLEGAL ); }
   151 #define CHECKRALIGN16(addr) if( (addr)&0x01 ) { sh4_raise_exception( EXC_DATA_ADDR_READ ); return TRUE; }
   152 #define CHECKRALIGN32(addr) if( (addr)&0x03 ) { sh4_raise_exception( EXC_DATA_ADDR_READ ); return TRUE; }
   153 #define CHECKRALIGN64(addr) if( (addr)&0x07 ) { sh4_raise_exception( EXC_DATA_ADDR_READ ); return TRUE; }
   154 #define CHECKWALIGN16(addr) if( (addr)&0x01 ) { sh4_raise_exception( EXC_DATA_ADDR_WRITE ); return TRUE; }
   155 #define CHECKWALIGN32(addr) if( (addr)&0x03 ) { sh4_raise_exception( EXC_DATA_ADDR_WRITE ); return TRUE; }
   156 #define CHECKWALIGN64(addr) if( (addr)&0x07 ) { sh4_raise_exception( EXC_DATA_ADDR_WRITE ); return TRUE; }
   158 #define CHECKFPUEN() if( !IS_FPU_ENABLED() ) { if( ir == 0xFFFD ) { UNDEF(ir); } else { return sh4_raise_slot_exception( EXC_FPU_DISABLED, EXC_SLOT_FPU_DISABLED ); } }
   159 #define CHECKDEST(p) if( (p) == 0 ) { ERROR( "%08X: Branch/jump to NULL, CPU halted", sh4r.pc ); sh4_core_exit(CORE_EXIT_HALT); return FALSE; }
   160 #define CHECKSLOTILLEGAL() if(sh4r.in_delay_slot) { sh4_raise_exception(EXC_SLOT_ILLEGAL); return TRUE; }
   162 #define ADDRSPACE (IS_SH4_PRIVMODE() ? sh4_address_space : sh4_user_address_space)
   163 #define SQADDRSPACE (IS_SH4_PRIVMODE() ? storequeue_address_space : storequeue_user_address_space)
   165 #define MEM_READ_BYTE( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_read(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { val = fntmp->read_byte(addrtmp); }
   166 #define MEM_READ_BYTE_FOR_WRITE( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_write(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { val = fntmp->read_byte_for_write(addrtmp); }
   167 #define MEM_READ_WORD( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_read(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { val = fntmp->read_word(addrtmp); }
   168 #define MEM_READ_LONG( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_read(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { val = fntmp->read_long(addrtmp); }
   169 #define MEM_WRITE_BYTE( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_write(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { fntmp->write_byte(addrtmp,val); }
   170 #define MEM_WRITE_WORD( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_write(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { fntmp->write_word(addrtmp,val); }
   171 #define MEM_WRITE_LONG( addr, val ) addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_write(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { fntmp->write_long(addrtmp,val); }
   172 #define MEM_PREFETCH( addr )  addrtmp = addr; if( (fntmp = mmu_get_region_for_vma_prefetch(&addrtmp)) == NULL ) { sh4r.in_delay_slot = 0; return TRUE; } else { fntmp->prefetch(addrtmp); }
   174 #define FP_WIDTH (IS_FPU_DOUBLESIZE() ? 8 : 4)
   176 #define MEM_FP_READ( addr, reg ) \
   177     if( IS_FPU_DOUBLESIZE() ) { \
   178 	CHECKRALIGN64(addr); \
   179         if( reg & 1 ) { \
   180             MEM_READ_LONG( addr, *((uint32_t *)&XF((reg) & 0x0E)) ); \
   181             MEM_READ_LONG( addr+4, *((uint32_t *)&XF(reg)) ); \
   182         } else { \
   183             MEM_READ_LONG( addr, *((uint32_t *)&FR(reg)) ); \
   184             MEM_READ_LONG( addr+4, *((uint32_t *)&FR((reg)|0x01)) ); \
   185 	} \
   186     } else { \
   187         CHECKRALIGN32(addr); \
   188         MEM_READ_LONG( addr, *((uint32_t *)&FR(reg)) ); \
   189     }
   190 #define MEM_FP_WRITE( addr, reg ) \
   191     if( IS_FPU_DOUBLESIZE() ) { \
   192         CHECKWALIGN64(addr); \
   193         if( reg & 1 ) { \
   194 	    MEM_WRITE_LONG( addr, *((uint32_t *)&XF((reg)&0x0E)) ); \
   195 	    MEM_WRITE_LONG( addr+4, *((uint32_t *)&XF(reg)) ); \
   196         } else { \
   197 	    MEM_WRITE_LONG( addr, *((uint32_t *)&FR(reg)) ); \
   198 	    MEM_WRITE_LONG( addr+4, *((uint32_t *)&FR((reg)|0x01)) ); \
   199 	} \
   200     } else { \
   201     	CHECKWALIGN32(addr); \
   202         MEM_WRITE_LONG(addr, *((uint32_t *)&FR((reg))) ); \
   203     }
   205 #define UNDEF(ir)
   206 #define UNIMP(ir)
   208 /**
   209  * Perform instruction-completion following core exit of a partially completed
   210  * instruction. NOTE: This is only allowed on memory writes, operation is not
   211  * guaranteed in any other case.
   212  */
   213 void sh4_finalize_instruction( void )
   214 {
   215     unsigned short ir;
   216     uint32_t tmp;
   218     if( IS_SYSCALL(sh4r.pc) ) {
   219         return;
   220     }
   221     assert( IS_IN_ICACHE(sh4r.pc) );
   222     ir = *(uint16_t *)GET_ICACHE_PTR(sh4r.pc);
   224     /**
   225      * Note - we can't take an exit on a control transfer instruction itself,
   226      * which means the exit must have happened in the delay slot. So for these
   227      * cases, finalize the delay slot instruction, and re-execute the control transfer.
   228      *
   229      * For delay slots which modify the argument used in the branch instruction,
   230      * we pretty much just assume that that can't have already happened in an exit case.
   231      */
   233 %%
   234 BRA disp {: 
   235     sh4r.pc += 2; 
   236     sh4_finalize_instruction(); 
   237     sh4r.pc += disp;
   238 :}
   239 BRAF Rn {: 
   240     sh4r.pc += 2; 
   241     tmp = sh4r.r[Rn];
   242     sh4_finalize_instruction(); 
   243     sh4r.pc += tmp;
   244 :}
   245 BSR disp {: 
   246     /* Note: PR is already set */ 
   247     sh4r.pc += 2;
   248     sh4_finalize_instruction();
   249     sh4r.pc += disp;
   250 :}
   251 BSRF Rn {:
   252     /* Note: PR is already set */ 
   253     sh4r.pc += 2;
   254     tmp = sh4r.r[Rn];
   255     sh4_finalize_instruction();
   256     sh4r.pc += tmp;
   257 :}
   258 BF/S disp {: 
   259     sh4r.pc += 2;
   260     sh4_finalize_instruction();
   261     if( !sh4r.t ) {
   262         sh4r.pc += disp;
   263     }
   264 :}
   265 BT/S disp {: 
   266     sh4r.pc += 2;
   267     sh4_finalize_instruction();
   268     if( sh4r.t ) {
   269         sh4r.pc += disp;
   270     }
   271 :}
   272 JMP @Rn {:
   273     sh4r.pc += 2;
   274     tmp = sh4r.r[Rn];
   275     sh4_finalize_instruction();
   276     sh4r.pc = tmp;
   277     sh4r.new_pc = tmp + 2;
   278     sh4r.slice_cycle += sh4_cpu_period;
   279     return;
   280 :}
   281 JSR @Rn {: 
   282     /* Note: PR is already set */ 
   283     sh4r.pc += 2;
   284     tmp = sh4r.r[Rn];
   285     sh4_finalize_instruction();
   286     sh4r.pc = tmp;
   287     sh4r.new_pc = tmp + 2;
   288     sh4r.slice_cycle += sh4_cpu_period;
   289     return;
   290 :}
   291 RTS {: 
   292     sh4r.pc += 2;
   293     sh4_finalize_instruction();
   294     sh4r.pc = sh4r.pr;
   295     sh4r.new_pc = sh4r.pr + 2;
   296     sh4r.slice_cycle += sh4_cpu_period;
   297     return;
   298 :}
   299 RTE {: 
   300     /* SR is already set */
   301     sh4r.pc += 2;
   302     sh4_finalize_instruction();
   303     sh4r.pc = sh4r.spc;
   304     sh4r.new_pc = sh4r.pr + 2;
   305     sh4r.slice_cycle += sh4_cpu_period;
   306     return;
   307 :}
   308 MOV.B Rm, @-Rn {: sh4r.r[Rn]--; :}
   309 MOV.W Rm, @-Rn {: sh4r.r[Rn] -= 2; :}
   310 MOV.L Rm, @-Rn {: sh4r.r[Rn] -= 4; :}
   311 MOV.B @Rm+, Rn {: if( Rm != Rn ) { sh4r.r[Rm] ++;  } :}
   312 MOV.W @Rm+, Rn {: if( Rm != Rn ) { sh4r.r[Rm] += 2; } :}
   313 MOV.L @Rm+, Rn {: if( Rm != Rn ) { sh4r.r[Rm] += 4; } :}
   314 %%
   315     sh4r.in_delay_slot = 0;
   316     sh4r.pc += 2;
   317     sh4r.new_pc = sh4r.pc+2;
   318     sh4r.slice_cycle += sh4_cpu_period;
   319 }
   321 #undef UNDEF
   322 #undef UNIMP
   324 #define UNDEF(ir) return sh4_raise_slot_exception(EXC_ILLEGAL, EXC_SLOT_ILLEGAL)
   325 #define UNIMP(ir) do{ ERROR( "Halted on unimplemented instruction at %08x, opcode = %04x", sh4r.pc, ir ); sh4_core_exit(CORE_EXIT_HALT); return FALSE; }while(0)
   328 gboolean sh4_execute_instruction( void )
   329 {
   330     uint32_t pc;
   331     unsigned short ir;
   332     uint32_t tmp;
   333     float ftmp;
   334     double dtmp;
   335     sh4addr_t addrtmp; // temporary holder for memory addresses
   336     mem_region_fn_t fntmp;
   339 #define R0 sh4r.r[0]
   340     pc = sh4r.pc;
   341     if( pc > 0xFFFFFF00 ) {
   342 	/* SYSCALL Magic */
   343         sh4r.in_delay_slot = 0;
   344         sh4r.pc = sh4r.pr;
   345         sh4r.new_pc = sh4r.pc + 2;
   346 	syscall_invoke( pc );
   347         return TRUE;
   348     }
   349     CHECKRALIGN16(pc);
   351 #ifdef ENABLE_SH4STATS
   352     sh4_stats_add_by_pc(sh4r.pc);
   353 #endif
   355     /* Read instruction */
   356     if( !IS_IN_ICACHE(pc) ) {
   357         gboolean delay_slot = sh4r.in_delay_slot;
   358 	if( !mmu_update_icache(pc) ) {
   359 	    if( delay_slot ) {
   360 	        sh4r.spc -= 2;
   361 	    }
   362 	    // Fault - look for the fault handler
   363 	    if( !mmu_update_icache(sh4r.pc) ) {
   364 		// double fault - halt
   365 		ERROR( "Double fault - halting" );
   366 		sh4_core_exit(CORE_EXIT_HALT);
   367 		return FALSE;
   368 	    }
   369 	}
   370 	pc = sh4r.pc;
   371     }
   372     assert( IS_IN_ICACHE(pc) );
   373     ir = *(uint16_t *)GET_ICACHE_PTR(sh4r.pc);
   375     /* FIXME: This is a bit of a hack, but the PC of the delay slot should not
   376      * be visible until after the instruction has executed (for exception 
   377      * correctness)
   378      */
   379     if( sh4r.in_delay_slot ) {
   380     	sh4r.pc -= 2;
   381     }
   382 %%
   383 AND Rm, Rn {: sh4r.r[Rn] &= sh4r.r[Rm]; :}
   384 AND #imm, R0 {: R0 &= imm; :}
   385  AND.B #imm, @(R0, GBR) {: MEM_READ_BYTE_FOR_WRITE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm & tmp ); :}
   386 NOT Rm, Rn {: sh4r.r[Rn] = ~sh4r.r[Rm]; :}
   387 OR Rm, Rn {: sh4r.r[Rn] |= sh4r.r[Rm]; :}
   388 OR #imm, R0  {: R0 |= imm; :}
   389  OR.B #imm, @(R0, GBR) {: MEM_READ_BYTE_FOR_WRITE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm | tmp ); :}
   390 TAS.B @Rn {:
   391     MEM_READ_BYTE_FOR_WRITE( sh4r.r[Rn], tmp );
   392     sh4r.t = ( tmp == 0 ? 1 : 0 );
   393     MEM_WRITE_BYTE( sh4r.r[Rn], tmp | 0x80 );
   394 :}
   395 TST Rm, Rn {: sh4r.t = (sh4r.r[Rn]&sh4r.r[Rm] ? 0 : 1); :}
   396 TST #imm, R0 {: sh4r.t = (R0 & imm ? 0 : 1); :}
   397  TST.B #imm, @(R0, GBR) {: MEM_READ_BYTE(R0+sh4r.gbr, tmp); sh4r.t = ( tmp & imm ? 0 : 1 ); :}
   398 XOR Rm, Rn {: sh4r.r[Rn] ^= sh4r.r[Rm]; :}
   399 XOR #imm, R0 {: R0 ^= imm; :}
   400  XOR.B #imm, @(R0, GBR) {: MEM_READ_BYTE_FOR_WRITE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm ^ tmp ); :}
   401 XTRCT Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rn]>>16) | (sh4r.r[Rm]<<16); :}
   403 ROTL Rn {:
   404     sh4r.t = sh4r.r[Rn] >> 31;
   405     sh4r.r[Rn] <<= 1;
   406     sh4r.r[Rn] |= sh4r.t;
   407 :}
   408 ROTR Rn {:
   409     sh4r.t = sh4r.r[Rn] & 0x00000001;
   410     sh4r.r[Rn] >>= 1;
   411     sh4r.r[Rn] |= (sh4r.t << 31);
   412 :}
   413 ROTCL Rn {:
   414     tmp = sh4r.r[Rn] >> 31;
   415     sh4r.r[Rn] <<= 1;
   416     sh4r.r[Rn] |= sh4r.t;
   417     sh4r.t = tmp;
   418 :}
   419 ROTCR Rn {:
   420     tmp = sh4r.r[Rn] & 0x00000001;
   421     sh4r.r[Rn] >>= 1;
   422     sh4r.r[Rn] |= (sh4r.t << 31 );
   423     sh4r.t = tmp;
   424 :}
   425 SHAD Rm, Rn {:
   426     tmp = sh4r.r[Rm];
   427     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   428     else if( (tmp & 0x1F) == 0 )  
   429         sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 31;
   430     else 
   431 	sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> (((~sh4r.r[Rm]) & 0x1F)+1);
   432 :}
   433 SHLD Rm, Rn {:
   434     tmp = sh4r.r[Rm];
   435     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   436     else if( (tmp & 0x1F) == 0 ) sh4r.r[Rn] = 0;
   437     else sh4r.r[Rn] >>= (((~tmp) & 0x1F)+1);
   438 :}
   439 SHAL Rn {:
   440     sh4r.t = sh4r.r[Rn] >> 31;
   441     sh4r.r[Rn] <<= 1;
   442 :}
   443 SHAR Rn {:
   444     sh4r.t = sh4r.r[Rn] & 0x00000001;
   445     sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 1;
   446 :}
   447 SHLL Rn {: sh4r.t = sh4r.r[Rn] >> 31; sh4r.r[Rn] <<= 1; :}
   448 SHLR Rn {: sh4r.t = sh4r.r[Rn] & 0x00000001; sh4r.r[Rn] >>= 1; :}
   449 SHLL2 Rn {: sh4r.r[Rn] <<= 2; :}
   450 SHLR2 Rn {: sh4r.r[Rn] >>= 2; :}
   451 SHLL8 Rn {: sh4r.r[Rn] <<= 8; :}
   452 SHLR8 Rn {: sh4r.r[Rn] >>= 8; :}
   453 SHLL16 Rn {: sh4r.r[Rn] <<= 16; :}
   454 SHLR16 Rn {: sh4r.r[Rn] >>= 16; :}
   456 EXTU.B Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x000000FF; :}
   457 EXTU.W Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x0000FFFF; :}
   458 EXTS.B Rm, Rn {: sh4r.r[Rn] = SIGNEXT8( sh4r.r[Rm]&0x000000FF ); :}
   459 EXTS.W Rm, Rn {: sh4r.r[Rn] = SIGNEXT16( sh4r.r[Rm]&0x0000FFFF ); :}
   460 SWAP.B Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]&0xFFFF0000) | ((sh4r.r[Rm]&0x0000FF00)>>8) | ((sh4r.r[Rm]&0x000000FF)<<8); :}
   461 SWAP.W Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]>>16) | (sh4r.r[Rm]<<16); :}
   463 CLRT {: sh4r.t = 0; :}
   464 SETT {: sh4r.t = 1; :}
   465 CLRMAC {: sh4r.mac = 0; :}
   466 LDTLB {: MMU_ldtlb(); :}
   467 CLRS {: sh4r.s = 0; :}
   468 SETS {: sh4r.s = 1; :}
   469 MOVT Rn {: sh4r.r[Rn] = sh4r.t; :}
   470 NOP {: /* NOP */ :}
   472 PREF @Rn {:
   473     MEM_PREFETCH(sh4r.r[Rn]);
   474 :}
   475 OCBI @Rn {: :}
   476 OCBP @Rn {: :}
   477 OCBWB @Rn {: :}
   478 MOVCA.L R0, @Rn {:
   479     tmp = sh4r.r[Rn];
   480     CHECKWALIGN32(tmp);
   481     MEM_WRITE_LONG( tmp, R0 );
   482 :}
   483 MOV.B Rm, @(R0, Rn) {: MEM_WRITE_BYTE( R0 + sh4r.r[Rn], sh4r.r[Rm] ); :}
   484 MOV.W Rm, @(R0, Rn) {: 
   485     CHECKWALIGN16( R0 + sh4r.r[Rn] );
   486     MEM_WRITE_WORD( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   487 :}
   488 MOV.L Rm, @(R0, Rn) {:
   489     CHECKWALIGN32( R0 + sh4r.r[Rn] );
   490     MEM_WRITE_LONG( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   491 :}
   492 MOV.B @(R0, Rm), Rn {: MEM_READ_BYTE( R0 + sh4r.r[Rm], sh4r.r[Rn] ); :}
   493 MOV.W @(R0, Rm), Rn {: CHECKRALIGN16( R0 + sh4r.r[Rm] );
   494     MEM_READ_WORD( R0 + sh4r.r[Rm], sh4r.r[Rn] );
   495 :}
   496 MOV.L @(R0, Rm), Rn {: CHECKRALIGN32( R0 + sh4r.r[Rm] );
   497     MEM_READ_LONG( R0 + sh4r.r[Rm], sh4r.r[Rn] );
   498 :}
   499 MOV.L Rm, @(disp, Rn) {:
   500     tmp = sh4r.r[Rn] + disp;
   501     CHECKWALIGN32( tmp );
   502     MEM_WRITE_LONG( tmp, sh4r.r[Rm] );
   503 :}
   504 MOV.B Rm, @Rn {: MEM_WRITE_BYTE( sh4r.r[Rn], sh4r.r[Rm] ); :}
   505 MOV.W Rm, @Rn {: CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn], sh4r.r[Rm] ); :}
   506 MOV.L Rm, @Rn {: CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn], sh4r.r[Rm] ); :}
   507  MOV.B Rm, @-Rn {: MEM_WRITE_BYTE( sh4r.r[Rn]-1, sh4r.r[Rm] ); sh4r.r[Rn]--; :}
   508  MOV.W Rm, @-Rn {: CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn]-2, sh4r.r[Rm] ); sh4r.r[Rn] -= 2; :}
   509  MOV.L Rm, @-Rn {: CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.r[Rm] ); sh4r.r[Rn] -= 4; :}
   510 MOV.L @(disp, Rm), Rn {:
   511     tmp = sh4r.r[Rm] + disp;
   512     CHECKRALIGN32( tmp );
   513     MEM_READ_LONG( tmp, sh4r.r[Rn] );
   514 :}
   515 MOV.B @Rm, Rn {: MEM_READ_BYTE( sh4r.r[Rm], sh4r.r[Rn] ); :}
   516  MOV.W @Rm, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); MEM_READ_WORD( sh4r.r[Rm], sh4r.r[Rn] ); :}
   517  MOV.L @Rm, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); MEM_READ_LONG( sh4r.r[Rm], sh4r.r[Rn] ); :}
   518 MOV Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]; :}
   519  MOV.B @Rm+, Rn {: MEM_READ_BYTE( sh4r.r[Rm], sh4r.r[Rn] ); if( Rm != Rn ) { sh4r.r[Rm] ++; } :}
   520  MOV.W @Rm+, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); MEM_READ_WORD( sh4r.r[Rm], sh4r.r[Rn] ); if( Rm != Rn ) { sh4r.r[Rm] += 2; } :}
   521  MOV.L @Rm+, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); MEM_READ_LONG( sh4r.r[Rm], sh4r.r[Rn] ); if( Rm != Rn ) { sh4r.r[Rm] += 4; } :}
   522 MOV.L @(disp, PC), Rn {:
   523     CHECKSLOTILLEGAL();
   524     tmp = (pc&0xFFFFFFFC) + disp + 4;
   525     MEM_READ_LONG( tmp, sh4r.r[Rn] );
   526 :}
   527 MOV.B R0, @(disp, GBR) {: MEM_WRITE_BYTE( sh4r.gbr + disp, R0 ); :}
   528 MOV.W R0, @(disp, GBR) {:
   529     tmp = sh4r.gbr + disp;
   530     CHECKWALIGN16( tmp );
   531     MEM_WRITE_WORD( tmp, R0 );
   532 :}
   533 MOV.L R0, @(disp, GBR) {:
   534     tmp = sh4r.gbr + disp;
   535     CHECKWALIGN32( tmp );
   536     MEM_WRITE_LONG( tmp, R0 );
   537 :}
   538  MOV.B @(disp, GBR), R0 {: MEM_READ_BYTE( sh4r.gbr + disp, R0 ); :}
   539 MOV.W @(disp, GBR), R0 {: 
   540     tmp = sh4r.gbr + disp;
   541     CHECKRALIGN16( tmp );
   542     MEM_READ_WORD( tmp, R0 );
   543 :}
   544 MOV.L @(disp, GBR), R0 {:
   545     tmp = sh4r.gbr + disp;
   546     CHECKRALIGN32( tmp );
   547     MEM_READ_LONG( tmp, R0 );
   548 :}
   549 MOV.B R0, @(disp, Rn) {: MEM_WRITE_BYTE( sh4r.r[Rn] + disp, R0 ); :}
   550 MOV.W R0, @(disp, Rn) {: 
   551     tmp = sh4r.r[Rn] + disp;
   552     CHECKWALIGN16( tmp );
   553     MEM_WRITE_WORD( tmp, R0 );
   554 :}
   555  MOV.B @(disp, Rm), R0 {: MEM_READ_BYTE( sh4r.r[Rm] + disp, R0 ); :}
   556 MOV.W @(disp, Rm), R0 {: 
   557     tmp = sh4r.r[Rm] + disp;
   558     CHECKRALIGN16( tmp );
   559     MEM_READ_WORD( tmp, R0 );
   560 :}
   561 MOV.W @(disp, PC), Rn {:
   562     CHECKSLOTILLEGAL();
   563     tmp = pc + 4 + disp;
   564     MEM_READ_WORD( tmp, sh4r.r[Rn] );
   565 :}
   566 MOVA @(disp, PC), R0 {:
   567     CHECKSLOTILLEGAL();
   568     R0 = (pc&0xFFFFFFFC) + disp + 4;
   569 :}
   570 MOV #imm, Rn {:  sh4r.r[Rn] = imm; :}
   572 FMOV @(R0, Rm), FRn {: MEM_FP_READ( sh4r.r[Rm] + R0, FRn ); :}
   573 FMOV FRm, @(R0, Rn) {: MEM_FP_WRITE( sh4r.r[Rn] + R0, FRm ); :}
   574 FMOV @Rm, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); :}
   575 FMOV @Rm+, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); sh4r.r[Rm] += FP_WIDTH; :}
   576 FMOV FRm, @Rn {: MEM_FP_WRITE( sh4r.r[Rn], FRm ); :}
   577  FMOV FRm, @-Rn {: MEM_FP_WRITE( sh4r.r[Rn] - FP_WIDTH, FRm ); sh4r.r[Rn] -= FP_WIDTH; :}
   578 FMOV FRm, FRn {: 
   579     if( IS_FPU_DOUBLESIZE() )
   580 	DR(FRn) = DR(FRm);
   581     else
   582 	FR(FRn) = FR(FRm);
   583 :}
   585 CMP/EQ #imm, R0 {: sh4r.t = ( R0 == imm ? 1 : 0 ); :}
   586 CMP/EQ Rm, Rn {: sh4r.t = ( sh4r.r[Rm] == sh4r.r[Rn] ? 1 : 0 ); :}
   587 CMP/GE Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   588 CMP/GT Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   589 CMP/HI Rm, Rn {: sh4r.t = ( sh4r.r[Rn] > sh4r.r[Rm] ? 1 : 0 ); :}
   590 CMP/HS Rm, Rn {: sh4r.t = ( sh4r.r[Rn] >= sh4r.r[Rm] ? 1 : 0 ); :}
   591 CMP/PL Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > 0 ? 1 : 0 ); :}
   592 CMP/PZ Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= 0 ? 1 : 0 ); :}
   593 CMP/STR Rm, Rn {: 
   594     /* set T = 1 if any byte in RM & RN is the same */
   595     tmp = sh4r.r[Rm] ^ sh4r.r[Rn];
   596     sh4r.t = ((tmp&0x000000FF)==0 || (tmp&0x0000FF00)==0 ||
   597              (tmp&0x00FF0000)==0 || (tmp&0xFF000000)==0)?1:0;
   598 :}
   600 ADD Rm, Rn {: sh4r.r[Rn] += sh4r.r[Rm]; :}
   601 ADD #imm, Rn {: sh4r.r[Rn] += imm; :}
   602 ADDC Rm, Rn {:
   603     tmp = sh4r.r[Rn];
   604     sh4r.r[Rn] += sh4r.r[Rm] + sh4r.t;
   605     sh4r.t = ( sh4r.r[Rn] < tmp || (sh4r.r[Rn] == tmp && sh4r.t != 0) ? 1 : 0 );
   606 :}
   607 ADDV Rm, Rn {:
   608     tmp = sh4r.r[Rn] + sh4r.r[Rm];
   609     sh4r.t = ( (sh4r.r[Rn]>>31) == (sh4r.r[Rm]>>31) && ((sh4r.r[Rn]>>31) != (tmp>>31)) );
   610     sh4r.r[Rn] = tmp;
   611 :}
   612 DIV0U {: sh4r.m = sh4r.q = sh4r.t = 0; :}
   613 DIV0S Rm, Rn {: 
   614     sh4r.q = sh4r.r[Rn]>>31;
   615     sh4r.m = sh4r.r[Rm]>>31;
   616     sh4r.t = sh4r.q ^ sh4r.m;
   617 :}
   618 DIV1 Rm, Rn {:
   619     /* This is derived from the sh4 manual with some simplifications */
   620     uint32_t tmp0, tmp1, tmp2, dir;
   622     dir = sh4r.q ^ sh4r.m;
   623     sh4r.q = (sh4r.r[Rn] >> 31);
   624     tmp2 = sh4r.r[Rm];
   625     sh4r.r[Rn] = (sh4r.r[Rn] << 1) | sh4r.t;
   626     tmp0 = sh4r.r[Rn];
   627     if( dir ) {
   628          sh4r.r[Rn] += tmp2;
   629          tmp1 = (sh4r.r[Rn]<tmp0 ? 1 : 0 );
   630     } else {
   631          sh4r.r[Rn] -= tmp2;
   632          tmp1 = (sh4r.r[Rn]>tmp0 ? 1 : 0 );
   633     }
   634     sh4r.q ^= sh4r.m ^ tmp1;
   635     sh4r.t = ( sh4r.q == sh4r.m ? 1 : 0 );
   636 :}
   637 DMULS.L Rm, Rn {: sh4r.mac = SIGNEXT32(sh4r.r[Rm]) * SIGNEXT32(sh4r.r[Rn]); :}
   638 DMULU.L Rm, Rn {: sh4r.mac = ((uint64_t)sh4r.r[Rm]) * ((uint64_t)sh4r.r[Rn]); :}
   639 DT Rn {:
   640     sh4r.r[Rn] --;
   641     sh4r.t = ( sh4r.r[Rn] == 0 ? 1 : 0 );
   642 :}
   643 MAC.W @Rm+, @Rn+ {:
   644     int32_t stmp;
   645     if( Rm == Rn ) {
   646 	CHECKRALIGN16(sh4r.r[Rn]);
   647 	MEM_READ_WORD( sh4r.r[Rn], tmp );
   648 	stmp = SIGNEXT16(tmp);
   649 	MEM_READ_WORD( sh4r.r[Rn]+2, tmp );
   650 	stmp *= SIGNEXT16(tmp);
   651 	sh4r.r[Rn] += 4;
   652     } else {
   653 	CHECKRALIGN16( sh4r.r[Rn] );
   654 	MEM_READ_WORD(sh4r.r[Rn], tmp);
   655 	stmp = SIGNEXT16(tmp);
   656 	CHECKRALIGN16( sh4r.r[Rm] );
   657 	MEM_READ_WORD(sh4r.r[Rm], tmp);
   658 	stmp = stmp * SIGNEXT16(tmp);
   659 	sh4r.r[Rn] += 2;
   660 	sh4r.r[Rm] += 2;
   661     }
   662     if( sh4r.s ) {
   663 	int64_t tmpl = (int64_t)((int32_t)sh4r.mac) + (int64_t)stmp;
   664 	if( tmpl > (int64_t)0x000000007FFFFFFFLL ) {
   665 	    sh4r.mac = 0x000000017FFFFFFFLL;
   666 	} else if( tmpl < (int64_t)0xFFFFFFFF80000000LL ) {
   667 	    sh4r.mac = 0x0000000180000000LL;
   668 	} else {
   669 	    sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   670 		((uint32_t)(sh4r.mac + stmp));
   671 	}
   672     } else {
   673 	sh4r.mac += SIGNEXT32(stmp);
   674     }
   675 :}
   676 MAC.L @Rm+, @Rn+ {:
   677     int64_t tmpl;
   678     if( Rm == Rn ) {
   679 	CHECKRALIGN32( sh4r.r[Rn] );
   680 	MEM_READ_LONG(sh4r.r[Rn], tmp);
   681 	tmpl = SIGNEXT32(tmp);
   682 	MEM_READ_LONG(sh4r.r[Rn]+4, tmp);
   683 	tmpl = tmpl * SIGNEXT32(tmp) + sh4r.mac;
   684 	sh4r.r[Rn] += 8;
   685     } else {
   686 	CHECKRALIGN32( sh4r.r[Rm] );
   687 	CHECKRALIGN32( sh4r.r[Rn] );
   688 	MEM_READ_LONG(sh4r.r[Rn], tmp);
   689 	tmpl = SIGNEXT32(tmp);
   690 	MEM_READ_LONG(sh4r.r[Rm], tmp);
   691 	tmpl = tmpl * SIGNEXT32(tmp) + sh4r.mac;
   692 	sh4r.r[Rn] += 4;
   693 	sh4r.r[Rm] += 4;
   694     }
   695     if( sh4r.s ) {
   696         /* 48-bit Saturation. Yuch */
   697         if( tmpl < (int64_t)0xFFFF800000000000LL )
   698             tmpl = 0xFFFF800000000000LL;
   699         else if( tmpl > (int64_t)0x00007FFFFFFFFFFFLL )
   700             tmpl = 0x00007FFFFFFFFFFFLL;
   701     }
   702     sh4r.mac = tmpl;
   703 :}
   704 MUL.L Rm, Rn {: sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   705                         (sh4r.r[Rm] * sh4r.r[Rn]); :}
   706 MULU.W Rm, Rn {:
   707     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   708                (uint32_t)((sh4r.r[Rm]&0xFFFF) * (sh4r.r[Rn]&0xFFFF));
   709 :}
   710 MULS.W Rm, Rn {:
   711     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   712                (uint32_t)(SIGNEXT32((int16_t)(sh4r.r[Rm])) * SIGNEXT32((int16_t)(sh4r.r[Rn])));
   713 :}
   714 NEGC Rm, Rn {:
   715     tmp = 0 - sh4r.r[Rm];
   716     sh4r.r[Rn] = tmp - sh4r.t;
   717     sh4r.t = ( 0<tmp || tmp<sh4r.r[Rn] ? 1 : 0 );
   718 :}
   719 NEG Rm, Rn {: sh4r.r[Rn] = 0 - sh4r.r[Rm]; :}
   720 SUB Rm, Rn {: sh4r.r[Rn] -= sh4r.r[Rm]; :}
   721 SUBC Rm, Rn {: 
   722     tmp = sh4r.r[Rn];
   723     sh4r.r[Rn] = sh4r.r[Rn] - sh4r.r[Rm] - sh4r.t;
   724     sh4r.t = (sh4r.r[Rn] > tmp || (sh4r.r[Rn] == tmp && sh4r.t == 1));
   725 :}
   726 SUBV Rm, Rn {:
   727     tmp = sh4r.r[Rn] - sh4r.r[Rm];
   728     sh4r.t = ( (sh4r.r[Rn]>>31) != (sh4r.r[Rm]>>31) && ((sh4r.r[Rn]>>31) != (tmp>>31)) );
   729     sh4r.r[Rn] = tmp;
   730 :}
   731 BRAF Rn {:
   732      CHECKSLOTILLEGAL();
   733      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   734      sh4r.in_delay_slot = 1;
   735      sh4r.pc = sh4r.new_pc;
   736      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   737      return TRUE;
   738 :}
   739 BSRF Rn {:
   740      CHECKSLOTILLEGAL();
   741      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   742      sh4r.in_delay_slot = 1;
   743      sh4r.pr = sh4r.pc + 4;
   744      sh4r.pc = sh4r.new_pc;
   745      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   746      TRACE_CALL( pc, sh4r.new_pc );
   747      return TRUE;
   748 :}
   749 BT disp {:
   750     CHECKSLOTILLEGAL();
   751     if( sh4r.t ) {
   752         CHECKDEST( sh4r.pc + disp + 4 )
   753         sh4r.pc += disp + 4;
   754         sh4r.new_pc = sh4r.pc + 2;
   755         return TRUE;
   756     }
   757 :}
   758 BF disp {:
   759     CHECKSLOTILLEGAL();
   760     if( !sh4r.t ) {
   761         CHECKDEST( sh4r.pc + disp + 4 )
   762         sh4r.pc += disp + 4;
   763         sh4r.new_pc = sh4r.pc + 2;
   764         return TRUE;
   765     }
   766 :}
   767 BT/S disp {:
   768     CHECKSLOTILLEGAL();
   769     if( sh4r.t ) {
   770         CHECKDEST( sh4r.pc + disp + 4 )
   771         sh4r.in_delay_slot = 1;
   772         sh4r.pc = sh4r.new_pc;
   773         sh4r.new_pc = pc + disp + 4;
   774         sh4r.in_delay_slot = 1;
   775         return TRUE;
   776     }
   777 :}
   778 BF/S disp {:
   779     CHECKSLOTILLEGAL();
   780     if( !sh4r.t ) {
   781         CHECKDEST( sh4r.pc + disp + 4 )
   782         sh4r.in_delay_slot = 1;
   783         sh4r.pc = sh4r.new_pc;
   784         sh4r.new_pc = pc + disp + 4;
   785         return TRUE;
   786     }
   787 :}
   788 BRA disp {:
   789     CHECKSLOTILLEGAL();
   790     CHECKDEST( sh4r.pc + disp + 4 );
   791     sh4r.in_delay_slot = 1;
   792     sh4r.pc = sh4r.new_pc;
   793     sh4r.new_pc = pc + 4 + disp;
   794     return TRUE;
   795 :}
   796 BSR disp {:
   797     CHECKDEST( sh4r.pc + disp + 4 );
   798     CHECKSLOTILLEGAL();
   799     sh4r.in_delay_slot = 1;
   800     sh4r.pr = pc + 4;
   801     sh4r.pc = sh4r.new_pc;
   802     sh4r.new_pc = pc + 4 + disp;
   803     TRACE_CALL( pc, sh4r.new_pc );
   804     return TRUE;
   805 :}
   806 TRAPA #imm {:
   807     CHECKSLOTILLEGAL();
   808     sh4r.pc += 2;
   809     sh4_raise_trap( imm );
   810     return TRUE;
   811 :}
   812 RTS {: 
   813     CHECKSLOTILLEGAL();
   814     CHECKDEST( sh4r.pr );
   815     sh4r.in_delay_slot = 1;
   816     sh4r.pc = sh4r.new_pc;
   817     sh4r.new_pc = sh4r.pr;
   818     TRACE_RETURN( pc, sh4r.new_pc );
   819     return TRUE;
   820 :}
   821 SLEEP {:
   822     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   823 	sh4r.sh4_state = SH4_STATE_STANDBY;
   824     } else {
   825 	sh4r.sh4_state = SH4_STATE_SLEEP;
   826     }
   827     return FALSE; /* Halt CPU */
   828 :}
   829 RTE {:
   830     CHECKPRIV();
   831     CHECKDEST( sh4r.spc );
   832     CHECKSLOTILLEGAL();
   833     sh4r.in_delay_slot = 1;
   834     sh4r.pc = sh4r.new_pc;
   835     sh4r.new_pc = sh4r.spc;
   836     sh4_write_sr( sh4r.ssr );
   837     return TRUE;
   838 :}
   839 JMP @Rn {:
   840     CHECKDEST( sh4r.r[Rn] );
   841     CHECKSLOTILLEGAL();
   842     sh4r.in_delay_slot = 1;
   843     sh4r.pc = sh4r.new_pc;
   844     sh4r.new_pc = sh4r.r[Rn];
   845     return TRUE;
   846 :}
   847 JSR @Rn {:
   848     CHECKDEST( sh4r.r[Rn] );
   849     CHECKSLOTILLEGAL();
   850     sh4r.in_delay_slot = 1;
   851     sh4r.pc = sh4r.new_pc;
   852     sh4r.new_pc = sh4r.r[Rn];
   853     sh4r.pr = pc + 4;
   854     TRACE_CALL( pc, sh4r.new_pc );
   855     return TRUE;
   856 :}
   857 STS MACH, Rn {: sh4r.r[Rn] = (sh4r.mac>>32); :}
   858 STS.L MACH, @-Rn {:
   859     CHECKWALIGN32( sh4r.r[Rn] );
   860     MEM_WRITE_LONG( sh4r.r[Rn]-4, (sh4r.mac>>32) );
   861     sh4r.r[Rn] -= 4;
   862 :}
   863 STC.L SR, @-Rn {:
   864     CHECKPRIV();
   865     CHECKWALIGN32( sh4r.r[Rn] );
   866     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4_read_sr() );
   867     sh4r.r[Rn] -= 4;
   868 :}
   869 LDS.L @Rm+, MACH {:
   870     CHECKRALIGN32( sh4r.r[Rm] );
   871     MEM_READ_LONG(sh4r.r[Rm], tmp);
   872     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   873 	(((uint64_t)tmp)<<32);
   874     sh4r.r[Rm] += 4;
   875 :}
   876 LDC.L @Rm+, SR {:
   877     CHECKSLOTILLEGAL();
   878     CHECKPRIV();
   879     CHECKWALIGN32( sh4r.r[Rm] );
   880     MEM_READ_LONG(sh4r.r[Rm], tmp);
   881     sh4_write_sr( tmp );
   882     sh4r.r[Rm] +=4;
   883 :}
   884 LDS Rm, MACH {:
   885     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   886                (((uint64_t)sh4r.r[Rm])<<32);
   887 :}
   888 LDC Rm, SR {:
   889     CHECKSLOTILLEGAL();
   890     CHECKPRIV();
   891     sh4_write_sr( sh4r.r[Rm] );
   892 :}
   893 LDC Rm, SGR {:
   894     CHECKPRIV();
   895     sh4r.sgr = sh4r.r[Rm];
   896 :}
   897 LDC.L @Rm+, SGR {:
   898     CHECKPRIV();
   899     CHECKRALIGN32( sh4r.r[Rm] );
   900     MEM_READ_LONG(sh4r.r[Rm], sh4r.sgr);
   901     sh4r.r[Rm] +=4;
   902 :}
   903 STS MACL, Rn {: sh4r.r[Rn] = (uint32_t)sh4r.mac; :}
   904 STS.L MACL, @-Rn {:
   905     CHECKWALIGN32( sh4r.r[Rn] );
   906     MEM_WRITE_LONG( sh4r.r[Rn]-4, (uint32_t)sh4r.mac );
   907     sh4r.r[Rn] -= 4;
   908 :}
   909 STC.L GBR, @-Rn {:
   910     CHECKWALIGN32( sh4r.r[Rn] );
   911     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.gbr );
   912     sh4r.r[Rn] -= 4;
   913 :}
   914 LDS.L @Rm+, MACL {:
   915     CHECKRALIGN32( sh4r.r[Rm] );
   916     MEM_READ_LONG(sh4r.r[Rm], tmp);
   917     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   918                (uint64_t)((uint32_t)tmp);
   919     sh4r.r[Rm] += 4;
   920 :}
   921 LDC.L @Rm+, GBR {:
   922     CHECKRALIGN32( sh4r.r[Rm] );
   923     MEM_READ_LONG(sh4r.r[Rm], sh4r.gbr);
   924     sh4r.r[Rm] +=4;
   925 :}
   926 LDS Rm, MACL {:
   927     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   928                (uint64_t)((uint32_t)(sh4r.r[Rm]));
   929 :}
   930 LDC Rm, GBR {: sh4r.gbr = sh4r.r[Rm]; :}
   931 STS PR, Rn {: sh4r.r[Rn] = sh4r.pr; :}
   932 STS.L PR, @-Rn {:
   933     CHECKWALIGN32( sh4r.r[Rn] );
   934     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.pr );
   935     sh4r.r[Rn] -= 4;
   936 :}
   937 STC.L VBR, @-Rn {:
   938     CHECKPRIV();
   939     CHECKWALIGN32( sh4r.r[Rn] );
   940     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.vbr );
   941     sh4r.r[Rn] -= 4;
   942 :}
   943 LDS.L @Rm+, PR {:
   944     CHECKRALIGN32( sh4r.r[Rm] );
   945     MEM_READ_LONG( sh4r.r[Rm], sh4r.pr );
   946     sh4r.r[Rm] += 4;
   947 :}
   948 LDC.L @Rm+, VBR {:
   949     CHECKPRIV();
   950     CHECKRALIGN32( sh4r.r[Rm] );
   951     MEM_READ_LONG(sh4r.r[Rm], sh4r.vbr);
   952     sh4r.r[Rm] +=4;
   953 :}
   954 LDS Rm, PR {: sh4r.pr = sh4r.r[Rm]; :}
   955 LDC Rm, VBR {:
   956     CHECKPRIV();
   957     sh4r.vbr = sh4r.r[Rm];
   958 :}
   959 STC SGR, Rn {:
   960     CHECKPRIV();
   961     sh4r.r[Rn] = sh4r.sgr;
   962 :}
   963 STC.L SGR, @-Rn {:
   964     CHECKPRIV();
   965     CHECKWALIGN32( sh4r.r[Rn] );
   966     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.sgr );
   967     sh4r.r[Rn] -= 4;
   968 :}
   969 STC.L SSR, @-Rn {:
   970     CHECKPRIV();
   971     CHECKWALIGN32( sh4r.r[Rn] );
   972     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.ssr );
   973     sh4r.r[Rn] -= 4;
   974 :}
   975 LDC.L @Rm+, SSR {:
   976     CHECKPRIV();
   977     CHECKRALIGN32( sh4r.r[Rm] );
   978     MEM_READ_LONG(sh4r.r[Rm], sh4r.ssr);
   979     sh4r.r[Rm] +=4;
   980 :}
   981 LDC Rm, SSR {:
   982     CHECKPRIV();
   983     sh4r.ssr = sh4r.r[Rm];
   984 :}
   985 STC.L SPC, @-Rn {:
   986     CHECKPRIV();
   987     CHECKWALIGN32( sh4r.r[Rn] );
   988     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.spc );
   989     sh4r.r[Rn] -= 4;
   990 :}
   991 LDC.L @Rm+, SPC {:
   992     CHECKPRIV();
   993     CHECKRALIGN32( sh4r.r[Rm] );
   994     MEM_READ_LONG(sh4r.r[Rm], sh4r.spc);
   995     sh4r.r[Rm] +=4;
   996 :}
   997 LDC Rm, SPC {:
   998     CHECKPRIV();
   999     sh4r.spc = sh4r.r[Rm];
  1000 :}
  1001 STS FPUL, Rn {: 
  1002     CHECKFPUEN();
  1003     sh4r.r[Rn] = FPULi; 
  1004 :}
  1005 STS.L FPUL, @-Rn {:
  1006     CHECKFPUEN();
  1007     CHECKWALIGN32( sh4r.r[Rn] );
  1008     MEM_WRITE_LONG( sh4r.r[Rn]-4, FPULi );
  1009     sh4r.r[Rn] -= 4;
  1010 :}
  1011 LDS.L @Rm+, FPUL {:
  1012     CHECKFPUEN();
  1013     CHECKRALIGN32( sh4r.r[Rm] );
  1014     MEM_READ_LONG(sh4r.r[Rm], FPULi);
  1015     sh4r.r[Rm] +=4;
  1016 :}
  1017 LDS Rm, FPUL {:
  1018     CHECKFPUEN();
  1019     FPULi = sh4r.r[Rm]; 
  1020 :}
  1021 STS FPSCR, Rn {: 
  1022     CHECKFPUEN();
  1023     sh4r.r[Rn] = sh4r.fpscr; 
  1024 :}
  1025 STS.L FPSCR, @-Rn {:
  1026     CHECKFPUEN();
  1027     CHECKWALIGN32( sh4r.r[Rn] );
  1028     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.fpscr );
  1029     sh4r.r[Rn] -= 4;
  1030 :}
  1031 LDS.L @Rm+, FPSCR {:
  1032     CHECKFPUEN();
  1033     CHECKRALIGN32( sh4r.r[Rm] );
  1034     MEM_READ_LONG(sh4r.r[Rm], tmp);
  1035     sh4r.r[Rm] +=4;
  1036     sh4_write_fpscr( tmp );
  1037 :}
  1038 LDS Rm, FPSCR {: 
  1039     CHECKFPUEN();
  1040     sh4_write_fpscr( sh4r.r[Rm] );
  1041 :}
  1042 STC DBR, Rn {: CHECKPRIV(); sh4r.r[Rn] = sh4r.dbr; :}
  1043 STC.L DBR, @-Rn {:
  1044     CHECKPRIV();
  1045     CHECKWALIGN32( sh4r.r[Rn] );
  1046     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.dbr );
  1047     sh4r.r[Rn] -= 4;
  1048 :}
  1049 LDC.L @Rm+, DBR {:
  1050     CHECKPRIV();
  1051     CHECKRALIGN32( sh4r.r[Rm] );
  1052     MEM_READ_LONG(sh4r.r[Rm], sh4r.dbr);
  1053     sh4r.r[Rm] +=4;
  1054 :}
  1055 LDC Rm, DBR {:
  1056     CHECKPRIV();
  1057     sh4r.dbr = sh4r.r[Rm];
  1058 :}
  1059 STC.L Rm_BANK, @-Rn {:
  1060     CHECKPRIV();
  1061     CHECKWALIGN32( sh4r.r[Rn] );
  1062     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.r_bank[Rm_BANK] );
  1063     sh4r.r[Rn] -= 4;
  1064 :}
  1065 LDC.L @Rm+, Rn_BANK {:
  1066     CHECKPRIV();
  1067     CHECKRALIGN32( sh4r.r[Rm] );
  1068     MEM_READ_LONG( sh4r.r[Rm], sh4r.r_bank[Rn_BANK] );
  1069     sh4r.r[Rm] += 4;
  1070 :}
  1071 LDC Rm, Rn_BANK {:
  1072     CHECKPRIV();
  1073     sh4r.r_bank[Rn_BANK] = sh4r.r[Rm];
  1074 :}
  1075 STC SR, Rn {: 
  1076     CHECKPRIV();
  1077     sh4r.r[Rn] = sh4_read_sr();
  1078 :}
  1079 STC GBR, Rn {:
  1080     sh4r.r[Rn] = sh4r.gbr;
  1081 :}
  1082 STC VBR, Rn {:
  1083     CHECKPRIV();
  1084     sh4r.r[Rn] = sh4r.vbr;
  1085 :}
  1086 STC SSR, Rn {:
  1087     CHECKPRIV();
  1088     sh4r.r[Rn] = sh4r.ssr;
  1089 :}
  1090 STC SPC, Rn {:
  1091     CHECKPRIV();
  1092     sh4r.r[Rn] = sh4r.spc;
  1093 :}
  1094 STC Rm_BANK, Rn {:
  1095     CHECKPRIV();
  1096     sh4r.r[Rn] = sh4r.r_bank[Rm_BANK];
  1097 :}
  1099 FADD FRm, FRn {:
  1100     CHECKFPUEN();
  1101     if( IS_FPU_DOUBLEPREC() ) {
  1102 	DR(FRn) += DR(FRm);
  1103     } else {
  1104 	FR(FRn) += FR(FRm);
  1106 :}
  1107 FSUB FRm, FRn {:
  1108     CHECKFPUEN();
  1109     if( IS_FPU_DOUBLEPREC() ) {
  1110 	DR(FRn) -= DR(FRm);
  1111     } else {
  1112 	FR(FRn) -= FR(FRm);
  1114 :}
  1116 FMUL FRm, FRn {:
  1117     CHECKFPUEN();
  1118     if( IS_FPU_DOUBLEPREC() ) {
  1119 	DR(FRn) *= DR(FRm);
  1120     } else {
  1121 	FR(FRn) *= FR(FRm);
  1123 :}
  1125 FDIV FRm, FRn {:
  1126     CHECKFPUEN();
  1127     if( IS_FPU_DOUBLEPREC() ) {
  1128 	DR(FRn) /= DR(FRm);
  1129     } else {
  1130 	FR(FRn) /= FR(FRm);
  1132 :}
  1134 FCMP/EQ FRm, FRn {:
  1135     CHECKFPUEN();
  1136     if( IS_FPU_DOUBLEPREC() ) {
  1137 	sh4r.t = ( DR(FRn) == DR(FRm) ? 1 : 0 );
  1138     } else {
  1139 	sh4r.t = ( FR(FRn) == FR(FRm) ? 1 : 0 );
  1141 :}
  1143 FCMP/GT FRm, FRn {:
  1144     CHECKFPUEN();
  1145     if( IS_FPU_DOUBLEPREC() ) {
  1146 	sh4r.t = ( DR(FRn) > DR(FRm) ? 1 : 0 );
  1147     } else {
  1148 	sh4r.t = ( FR(FRn) > FR(FRm) ? 1 : 0 );
  1150 :}
  1152 FSTS FPUL, FRn {: CHECKFPUEN(); FR(FRn) = FPULf; :}
  1153 FLDS FRm, FPUL {: CHECKFPUEN(); FPULf = FR(FRm); :}
  1154 FLOAT FPUL, FRn {: 
  1155     CHECKFPUEN();
  1156     if( IS_FPU_DOUBLEPREC() ) {
  1157 	if( FRn&1 ) { // No, really...
  1158 	    dtmp = (double)FPULi;
  1159 	    FR(FRn) = *(((float *)&dtmp)+1);
  1160 	} else {
  1161 	    DRF(FRn>>1) = (double)FPULi;
  1163     } else {
  1164 	FR(FRn) = (float)FPULi;
  1166 :}
  1167 FTRC FRm, FPUL {:
  1168     CHECKFPUEN();
  1169     if( IS_FPU_DOUBLEPREC() ) {
  1170 	if( FRm&1 ) {
  1171 	    dtmp = 0;
  1172 	    *(((float *)&dtmp)+1) = FR(FRm);
  1173 	} else {
  1174 	    dtmp = DRF(FRm>>1);
  1176         if( dtmp >= MAX_INTF )
  1177             FPULi = MAX_INT;
  1178         else if( dtmp <= MIN_INTF )
  1179             FPULi = MIN_INT;
  1180         else 
  1181             FPULi = (int32_t)dtmp;
  1182     } else {
  1183 	ftmp = FR(FRm);
  1184 	if( ftmp >= MAX_INTF )
  1185 	    FPULi = MAX_INT;
  1186 	else if( ftmp <= MIN_INTF )
  1187 	    FPULi = MIN_INT;
  1188 	else
  1189 	    FPULi = (int32_t)ftmp;
  1191 :}
  1192 FNEG FRn {:
  1193     CHECKFPUEN();
  1194     if( IS_FPU_DOUBLEPREC() ) {
  1195 	DR(FRn) = -DR(FRn);
  1196     } else {
  1197         FR(FRn) = -FR(FRn);
  1199 :}
  1200 FABS FRn {:
  1201     CHECKFPUEN();
  1202     if( IS_FPU_DOUBLEPREC() ) {
  1203 	DR(FRn) = fabs(DR(FRn));
  1204     } else {
  1205         FR(FRn) = fabsf(FR(FRn));
  1207 :}
  1208 FSQRT FRn {:
  1209     CHECKFPUEN();
  1210     if( IS_FPU_DOUBLEPREC() ) {
  1211 	DR(FRn) = sqrt(DR(FRn));
  1212     } else {
  1213         FR(FRn) = sqrtf(FR(FRn));
  1215 :}
  1216 FLDI0 FRn {:
  1217     CHECKFPUEN();
  1218     if( IS_FPU_DOUBLEPREC() ) {
  1219 	DR(FRn) = 0.0;
  1220     } else {
  1221         FR(FRn) = 0.0;
  1223 :}
  1224 FLDI1 FRn {:
  1225     CHECKFPUEN();
  1226     if( IS_FPU_DOUBLEPREC() ) {
  1227 	DR(FRn) = 1.0;
  1228     } else {
  1229         FR(FRn) = 1.0;
  1231 :}
  1232 FMAC FR0, FRm, FRn {:
  1233     CHECKFPUEN();
  1234     if( IS_FPU_DOUBLEPREC() ) {
  1235         DR(FRn) += DR(FRm)*DR(0);
  1236     } else {
  1237 	FR(FRn) += (double)FR(FRm)*(double)FR(0);
  1239 :}
  1240 FRCHG {: 
  1241     CHECKFPUEN(); 
  1242     sh4r.fpscr ^= FPSCR_FR; 
  1243     sh4_switch_fr_banks();
  1244 :}
  1245 FSCHG {: CHECKFPUEN(); sh4r.fpscr ^= FPSCR_SZ; :}
  1246 FCNVSD FPUL, FRn {:
  1247     CHECKFPUEN();
  1248     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1249 	DR(FRn) = (double)FPULf;
  1251 :}
  1252 FCNVDS FRm, FPUL {:
  1253     CHECKFPUEN();
  1254     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1255 	FPULf = (float)DR(FRm);
  1257 :}
  1259 FSRRA FRn {:
  1260     CHECKFPUEN();
  1261     if( !IS_FPU_DOUBLEPREC() ) {
  1262 	FR(FRn) = 1.0/sqrt(FR(FRn));
  1264 :}
  1265 FIPR FVm, FVn {:
  1266     CHECKFPUEN();
  1267     if( !IS_FPU_DOUBLEPREC() ) {
  1268         int tmp2 = FVn<<2;
  1269         tmp = FVm<<2;
  1270         FR(tmp2+3) = FR(tmp)*FR(tmp2) +
  1271             FR(tmp+1)*FR(tmp2+1) +
  1272             FR(tmp+2)*FR(tmp2+2) +
  1273             FR(tmp+3)*FR(tmp2+3);
  1275 :}
  1276 FSCA FPUL, FRn {:
  1277     CHECKFPUEN();
  1278     if( !IS_FPU_DOUBLEPREC() ) {
  1279 	sh4_fsca( FPULi, (float *)&(DRF(FRn>>1)) );
  1281 :}
  1282 FTRV XMTRX, FVn {:
  1283     CHECKFPUEN();
  1284     if( !IS_FPU_DOUBLEPREC() ) {
  1285 	sh4_ftrv((float *)&(DRF(FVn<<1)) );
  1287 :}
  1288 UNDEF {:
  1289     UNDEF(ir);
  1290 :}
  1291 %%
  1292     sh4r.pc = sh4r.new_pc;
  1293     sh4r.new_pc += 2;
  1295     sh4r.in_delay_slot = 0;
  1296     return TRUE;
.