Search
lxdream.org :: lxdream/src/sh4/scif.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/scif.c
changeset 32:bf0bc2c524b8
prev30:89b30313d757
next35:21a4be098304
author nkeynes
date Mon Dec 26 03:11:14 2005 +0000 (18 years ago)
permissions -rw-r--r--
last change Open video window before debug window (so debug is on top by default)
view annotate diff log raw
     1 /**
     2  * $Id: scif.c,v 1.6 2005-12-26 03:10:23 nkeynes Exp $
     3  * SCIF (Serial Communication Interface with FIFO) implementation - part of the 
     4  * SH4 standard on-chip peripheral set. The SCIF is hooked up to the DCs
     5  * external serial port
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #include <glib.h>
    21 #include "dream.h"
    22 #include "mem.h"
    23 #include "sh4core.h"
    24 #include "sh4mmio.h"
    25 #include "intc.h"
    26 #include "clock.h"
    27 #include "serial.h"
    28 #include "modules.h"
    30 void SCIF_set_break(void);
    32 /************************* External serial interface ************************/
    34 /**
    35  * Note: serial_* operations are called from outside the SH4, and as such are
    36  * named relative to the external serial device. SCIF_* operations are only
    37  * called internally to the SH4 and so are named relative to the CPU.
    38  */
    40 /**
    41  * Storage space for inbound/outbound data blocks. It's a little more
    42  * convenient for serial consumers to be able to deal with block-sized pieces
    43  * rather than a byte at a time, even if it makes all this look rather
    44  * complicated.
    45  *
    46  * Currently there's no limit on the number of blocks that can be queued up.
    47  */
    48 typedef struct serial_data_block {
    49     uint32_t length;
    50     uint32_t offset;
    51     struct serial_data_block *next;
    52     char data[];
    53 } *serial_data_block_t;
    55 serial_data_block_t serial_recvq_head = NULL, serial_recvq_tail = NULL;
    56 serial_device_t serial_device = NULL;
    58 void serial_attach_device( serial_device_t dev ) 
    59 {
    60     if( serial_device != NULL )
    61 	serial_detach_device();
    62     serial_device = dev;
    63 }
    66 void serial_detach_device( void )
    67 {
    68     serial_device = NULL;
    69 }
    71 /**
    72  * Add a block of data to the serial receive queue. The data will be received
    73  * by the CPU at the appropriate baud rate.
    74  */
    75 void serial_transmit_data( char *data, int length ) {
    76     if( length == 0 )
    77 	return;
    78     serial_data_block_t block = 
    79 	g_malloc( sizeof( struct serial_data_block ) + length );
    80     block->length = length;
    81     block->offset = 0;
    82     block->next = NULL;
    83     memcpy( block->data, data, length );
    85     if( serial_recvq_head == NULL ) {
    86 	serial_recvq_head = serial_recvq_tail = block;
    87     } else {
    88 	serial_recvq_tail->next = block;
    89 	serial_recvq_tail = block;
    90     }
    91 }
    93 /**
    94  * Dequeue a byte from the serial input queue
    95  */
    96 static int serial_transmit_dequeue( ) {
    97     if( serial_recvq_head != NULL ) {
    98 	uint8_t val = serial_recvq_head->data[serial_recvq_head->offset++];
    99 	if( serial_recvq_head->offset >= serial_recvq_head->length ) {
   100 	    serial_data_block_t next = serial_recvq_head->next;
   101 	    g_free( serial_recvq_head );
   102 	    serial_recvq_head = next;
   103 	    if( next == NULL )
   104 		serial_recvq_tail = NULL;
   105 	}
   106 	return (int)(unsigned int)val;
   107     }
   108     return -1;
   110 }
   112 void serial_transmit_break() {
   113     SCIF_set_break();
   114 }
   116 /********************************* SCIF *************************************/
   118 #define FIFO_LENGTH 16
   119 #define FIFO_ARR_LENGTH (FIFO_LENGTH+1)
   121 /* Serial control register flags */
   122 #define SCSCR2_TIE  0x80
   123 #define SCSCR2_RIE  0x40
   124 #define SCSCR2_TE   0x20
   125 #define SCSCR2_RE   0x10
   126 #define SCSCR2_REIE 0x08
   127 #define SCSCR2_CKE 0x02
   129 #define IS_TRANSMIT_IRQ_ENABLED() (MMIO_READ(SCIF,SCSCR2) & SCSCR2_TIE)
   130 #define IS_RECEIVE_IRQ_ENABLED() (MMIO_READ(SCIF,SCSCR2) & SCSCR2_RIE)
   131 #define IS_RECEIVE_ERROR_IRQ_ENABLED() (MMIO_READ(SCIF,SCSCR2) & (SCSCR2_RIE|SCSCR2_REIE))
   132 /* Receive is enabled if the RE bit is set in SCSCR2, and the ORER bit is cleared in SCLSR2 */
   133 #define IS_RECEIVE_ENABLED() ( (MMIO_READ(SCIF,SCSCR2) & SCSCR2_RE) && (MMIO_READ(SCIF,SCLSR2) & SCLSR2_ORER == 0) )
   134 /* Transmit is enabled if the TE bit is set in SCSCR2 */
   135 #define IS_TRANSMIT_ENABLED() (MMIO_READ(SCIF,SCSCR2) & SCSCR2_TE)
   136 #define IS_LOOPBACK_ENABLED() (MMIO_READ(SCIF,SCFCR2) & SCFCR2_LOOP)
   138 /* Serial status register flags */
   139 #define SCFSR2_ER   0x80
   140 #define SCFSR2_TEND 0x40
   141 #define SCFSR2_TDFE 0x20
   142 #define SCFSR2_BRK  0x10
   143 #define SCFSR2_RDF  0x02
   144 #define SCFSR2_DR   0x01
   146 /* FIFO control register flags */
   147 #define SCFCR2_MCE   0x08
   148 #define SCFCR2_TFRST 0x04
   149 #define SCFCR2_RFRST 0x02
   150 #define SCFCR2_LOOP  0x01
   152 /* Line Status Register */
   153 #define SCLSR2_ORER 0x01
   155 struct SCIF_fifo {
   156     int head;
   157     int tail;
   158     int trigger;
   159     uint8_t data[FIFO_ARR_LENGTH];
   160 };
   162 int SCIF_recvq_triggers[4] = {1, 4, 8, 14};
   163 struct SCIF_fifo SCIF_recvq = {0,0,1};
   165 int SCIF_sendq_triggers[4] = {8, 4, 2, 1};
   166 struct SCIF_fifo SCIF_sendq = {0,0,8};
   168 /**
   169  * Flag to indicate if data was received (ie added to the receive queue)
   170  * during the last SCIF clock tick. Used to determine when to set the DR
   171  * flag.
   172  */
   173 gboolean SCIF_rcvd_last_tick = FALSE;
   175 uint32_t SCIF_tick_period = 0;
   176 uint32_t SCIF_tick_remainder = 0;
   178 void SCIF_save_state( FILE *f ) 
   179 {
   180     fwrite( &SCIF_recvq, sizeof(SCIF_recvq), 1, f );
   181     fwrite( &SCIF_sendq, sizeof(SCIF_sendq), 1, f );
   182     fwrite( &SCIF_rcvd_last_tick, sizeof(gboolean), 1, f );
   184 }
   186 int SCIF_load_state( FILE *f ) 
   187 {
   188     fread( &SCIF_recvq, sizeof(SCIF_recvq), 1, f );
   189     fread( &SCIF_sendq, sizeof(SCIF_sendq), 1, f );
   190     fread( &SCIF_rcvd_last_tick, sizeof(gboolean), 1, f );
   191     return 0;
   192 }
   194 static inline uint8_t SCIF_recvq_size( ) 
   195 {
   196     int val = SCIF_recvq.tail - SCIF_recvq.head;
   197     if( val < 0 ) {
   198 	val = FIFO_ARR_LENGTH - SCIF_recvq.head + SCIF_recvq.tail;
   199     }
   200     return val;
   201 }
   203 int SCIF_recvq_dequeue( gboolean clearFlags )
   204 {
   205     uint8_t result;
   206     uint32_t tmp, length;
   207     if( SCIF_recvq.head == SCIF_recvq.tail )
   208 	return -1; /* No data */
   209     result = SCIF_recvq.data[SCIF_recvq.head++];
   210     if( SCIF_recvq.head > FIFO_LENGTH )
   211 	SCIF_recvq.head = 0;
   213     /* Update data count register */
   214     tmp = MMIO_READ( SCIF, SCFDR2 ) & 0xF0;
   215     length = SCIF_recvq_size();
   216     MMIO_WRITE( SCIF, SCFDR2, tmp | length );
   218     /* Clear flags (if requested ) */
   219     if( clearFlags && length < SCIF_recvq.trigger ) {
   220 	tmp = SCFSR2_RDF;
   221 	if( length == 0 )
   222 	    tmp |= SCFSR2_DR;
   223 	tmp = MMIO_READ( SCIF, SCFSR2 ) & (~tmp);
   224 	MMIO_WRITE( SCIF, SCFSR2, tmp );
   225 	/* If both flags are cleared, clear the interrupt as well */
   226 	if( (tmp & (SCFSR2_DR|SCFSR2_RDF)) == 0 && IS_RECEIVE_IRQ_ENABLED() )
   227 	    intc_clear_interrupt( INT_SCIF_RXI );
   228     }
   230     return (int)(unsigned int)result;
   231 }
   233 gboolean SCIF_recvq_enqueue( uint8_t value )
   234 {
   235     uint32_t tmp, length;
   236     int newpos = SCIF_recvq.tail + 1;
   237     if( newpos > FIFO_LENGTH )
   238 	newpos = 0;
   239     if( newpos == SCIF_recvq.head ) {
   240 	/* FIFO full - set ORER and discard the value */
   241 	MMIO_WRITE( SCIF, SCLSR2, SCLSR2_ORER );
   242 	if( IS_RECEIVE_ERROR_IRQ_ENABLED() )
   243 	    intc_raise_interrupt( INT_SCIF_ERI );
   244 	return FALSE;
   245     }
   246     SCIF_recvq.data[SCIF_recvq.tail] = value;
   248     /* Update data count register */
   249     tmp = MMIO_READ( SCIF, SCFDR2 ) & 0xF0;
   250     length = SCIF_recvq_size();
   251     MMIO_WRITE( SCIF, SCFDR2, tmp | length );
   253     /* Update status register */
   254     tmp = MMIO_READ( SCIF, SCFSR2 );
   255     if( length >= SCIF_recvq.trigger ) {
   256 	tmp |= SCFSR2_RDF;
   257 	if( IS_RECEIVE_IRQ_ENABLED() ) 
   258 	    intc_raise_interrupt( INT_SCIF_RXI );
   259     }
   260     MMIO_WRITE( SCIF, SCFSR2, tmp );
   261     return TRUE;
   262 }
   265 /**
   266  * Reset the receive FIFO to its initial state. Manual is unclear as to
   267  * whether this also clears flags/interrupts, but we're assuming here that
   268  * it does until proven otherwise.
   269  */
   270 void SCIF_recvq_clear( void ) 
   271 {
   272     SCIF_recvq.head = SCIF_recvq.tail = 0;
   273     MMIO_WRITE( SCIF, SCFDR2, MMIO_READ( SCIF, SCFDR2 ) & 0xF0 );
   274     MMIO_WRITE( SCIF, SCFSR2, MMIO_READ( SCIF, SCFSR2 ) & ~(SCFSR2_DR|SCFSR2_RDF) );
   275     if( IS_RECEIVE_IRQ_ENABLED() )
   276 	intc_clear_interrupt( INT_SCIF_RXI );
   277 }
   279 static inline uint8_t SCIF_sendq_size( ) 
   280 {
   281     int val = SCIF_sendq.tail - SCIF_sendq.head;
   282     if( val < 0 ) {
   283 	val = FIFO_ARR_LENGTH - SCIF_sendq.head + SCIF_sendq.tail;
   284     }
   285     return val;
   286 }
   288 /**
   289  * Dequeue one byte from the SCIF transmit queue (ie transmit the byte),
   290  * updating all status flags as required.
   291  * @return The byte dequeued, or -1 if the queue is empty.
   292  */
   293 int SCIF_sendq_dequeue( )
   294 {
   295     uint8_t result;
   296     uint32_t tmp, length;
   297     if( SCIF_sendq.head == SCIF_sendq.tail )
   298 	return -1; /* No data */
   300     /* Update queue head pointer */
   301     result = SCIF_sendq.data[SCIF_sendq.head++];
   302     if( SCIF_sendq.head > FIFO_LENGTH )
   303 	SCIF_sendq.head = 0;
   305     /* Update data count register */
   306     tmp = MMIO_READ( SCIF, SCFDR2 ) & 0x0F;
   307     length = SCIF_sendq_size();
   308     MMIO_WRITE( SCIF, SCFDR2, tmp | (length << 8) );
   310     /* Update status register */
   311     if( length <= SCIF_sendq.trigger ) {
   312 	tmp = MMIO_READ( SCIF, SCFSR2 ) | SCFSR2_TDFE;
   313 	if( length == 0 )
   314 	    tmp |= SCFSR2_TEND; /* Transmission ended - no data waiting */
   315 	if( IS_TRANSMIT_IRQ_ENABLED() ) 
   316 	    intc_raise_interrupt( INT_SCIF_TXI );
   317 	MMIO_WRITE( SCIF, SCFSR2, tmp );
   318     }
   319     return (int)(unsigned int)result;
   320 }
   322 /**
   323  * Enqueue a single byte in the SCIF transmit queue. If the queue is full,
   324  * the value will be discarded.
   325  * @param value to be queued.
   326  * @param clearFlags TRUE if the TEND/TDFE flags should be cleared
   327  *   if the queue exceeds the trigger level. (According to the manual,
   328  *   DMAC writes will clear the flag, whereas regular SH4 writes do NOT
   329  *   automatically clear it. Go figure).
   330  * @return gboolean TRUE if the value was queued, FALSE if the queue was
   331  *   full.
   332  */
   333 gboolean SCIF_sendq_enqueue( uint8_t value, gboolean clearFlags )
   334 {
   335     uint32_t tmp, length;
   336     int newpos = SCIF_sendq.tail + 1;
   337     if( newpos > FIFO_LENGTH )
   338 	newpos = 0;
   339     if( newpos == SCIF_sendq.head ) {
   340 	/* FIFO full - discard */
   341 	return FALSE;
   342     }
   343     SCIF_sendq.data[SCIF_sendq.tail] = value;
   344     SCIF_sendq.tail = newpos;
   346     /* Update data count register */
   347     tmp = MMIO_READ( SCIF, SCFDR2 ) & 0x0F;
   348     length = SCIF_sendq_size();
   349     MMIO_WRITE( SCIF, SCFDR2, tmp | (length << 8) );
   351     /* Update flags if requested */
   352     if( clearFlags ) {
   353 	tmp = SCFSR2_TEND;
   354 	if( length > SCIF_sendq.trigger ) {
   355 	    tmp |= SCFSR2_TDFE;
   356 	    if( IS_TRANSMIT_IRQ_ENABLED() )
   357 		intc_clear_interrupt( INT_SCIF_TXI );
   358 	}
   359 	tmp = MMIO_READ( SCIF, SCFSR2 ) & (~tmp);
   360 	MMIO_WRITE( SCIF, SCFSR2, tmp );
   361     }
   362     return TRUE;
   363 }
   365 void SCIF_sendq_clear( void ) 
   366 {
   367     SCIF_sendq.head = SCIF_sendq.tail = 0;
   368     MMIO_WRITE( SCIF, SCFDR2, MMIO_READ( SCIF, SCFDR2 ) & 0x0F );
   369     MMIO_WRITE( SCIF, SCFSR2, MMIO_READ( SCIF, SCFSR2 ) | SCFSR2_TEND | SCFSR2_TDFE );
   370     if( IS_TRANSMIT_IRQ_ENABLED() ) {
   371 	intc_raise_interrupt( INT_SCIF_TXI );
   372     }
   373 }
   375 /**
   376  * Update the SCFSR2 status register with the given mask (ie clear any values
   377  * that are set to 0 in the mask. According to a strict reading of the doco
   378  * though, the bits will only actually clear if the flag state is no longer
   379  * true, so we need to recheck everything...
   380  */
   381 void SCIF_update_status( uint32_t mask )
   382 {
   383     uint32_t value = MMIO_READ( SCIF, SCFSR2 );
   384     uint32_t result = value & mask;
   385     uint32_t sendq_size = SCIF_sendq_size();
   386     uint32_t recvq_size = SCIF_recvq_size();
   388     if( sendq_size != 0 )
   389 	result |= SCFSR2_TEND;
   391     if( sendq_size <= SCIF_sendq.trigger )
   392 	result |= SCFSR2_TDFE;
   393     else if( result & SCFSR2_TDFE == 0 && IS_TRANSMIT_IRQ_ENABLED() )
   394 	intc_clear_interrupt( INT_SCIF_TXI );
   396     if( recvq_size >= SCIF_recvq.trigger )
   397 	result |= SCFSR2_RDF;
   398     if( (value & SCFSR2_DR) != 0 && (result & SCFSR2_DR) == 0 &&
   399 	recvq_size != 0 )
   400 	result |= SCFSR2_DR;
   401     if( (result & (SCFSR2_DR|SCFSR2_RDF)) == 0 && IS_RECEIVE_IRQ_ENABLED() )
   402 	intc_clear_interrupt( INT_SCIF_RXI );
   404     if( IS_RECEIVE_ERROR_IRQ_ENABLED() ) {
   405 	if( (result & SCFSR2_BRK) == 0 )
   406 	    intc_clear_interrupt( INT_SCIF_BRI );
   407 	if( (result & SCFSR2_ER) == 0 && 
   408 	    (MMIO_READ( SCIF, SCLSR2 ) & SCLSR2_ORER) == 0 )
   409 	    intc_clear_interrupt( INT_SCIF_ERI );
   410     }
   411 }
   413 /**
   414  * Set the break detected flag
   415  */
   416 void SCIF_set_break( void ) 
   417 {
   418     MMIO_WRITE( SCIF, SCFSR2, MMIO_READ( SCIF, SCFSR2 ) | SCFSR2_BRK );
   419     if( IS_RECEIVE_ERROR_IRQ_ENABLED() )
   420 	intc_raise_interrupt( INT_SCIF_BRI );
   421 }
   423 const static int SCIF_CLOCK_MULTIPLIER[4] = {1, 4, 16, 64};
   425 /**
   426  * Calculate the current line speed.
   427  */
   428 void SCIF_update_line_speed( void )
   429 {
   430     /* If CKE1 is set, use the external clock as a base */
   431     if( MMIO_READ( SCIF, SCSCR2 ) & SCSCR2_CKE ) {
   434     } else {
   436 	/* Otherwise, SH4 peripheral clock divided by n */
   437 	int mult = SCIF_CLOCK_MULTIPLIER[MMIO_READ( SCIF, SCSMR2 ) & 0x03];
   439 	/* Then process the bitrate register */
   440 	int bbr = MMIO_READ( SCIF, SCBRR2 ) & 0xFF;
   442 	int baudrate = sh4_peripheral_freq / (32 * mult * (bbr+1) );
   444 	if( serial_device != NULL && serial_device->set_line_speed != NULL )
   445 	    serial_device->set_line_speed( baudrate );
   447 	SCIF_tick_period = sh4_peripheral_period * (32 * mult * (bbr+1));
   449 	/*
   450 	  clock_set_tick_rate( CLOCK_SCIF, baudrate / 10 );
   451 	*/
   452     }
   453 }
   455 int32_t mmio_region_SCIF_read( uint32_t reg )
   456 {
   457     switch( reg ) {
   458     case SCFRDR2: /* Receive data */
   459 	return SCIF_recvq_dequeue(FALSE);
   460     default:
   461 	return MMIO_READ( SCIF, reg );
   462     }
   463 }
   465 void mmio_region_SCIF_write( uint32_t reg, uint32_t val ) 
   466 {
   467     uint32_t tmp;
   468     switch( reg ) {
   469     case SCSMR2: /* Serial mode register */
   470 	/* Bit 6 => 0 = 8-bit, 1 = 7-bit
   471 	 * Bit 5 => 0 = Parity disabled, 1 = parity enabled
   472 	 * Bit 4 => 0 = Even parity, 1 = Odd parity
   473 	 * Bit 3 => 0 = 1 stop bit, 1 = 2 stop bits
   474 	 * Bits 0-1 => Clock select 00 = P, 01 = P/4, 10 = P/16, 11 = P/64
   475 	 */
   476 	val &= 0x007B;
   477 	if( serial_device != NULL ) {
   478 	    serial_device->set_line_params( val );
   479 	}
   480 	tmp = MMIO_READ( SCIF, SCSMR2 );
   481 	if( tmp & 0x03 != val & 0x03 ) {
   482 	    /* Clock change */
   483 	    SCIF_update_line_speed( );
   484 	}
   485 	/* Save for later read-back */
   486 	MMIO_WRITE( SCIF, SCSMR2, val );
   487 	break;
   488     case SCBRR2: /* Bit rate register */
   489 	MMIO_WRITE( SCIF, SCBRR2, val );
   490 	SCIF_update_line_speed( );
   491 	break;
   492     case SCSCR2: /* Serial control register */
   493 	/* Bit 7 => Transmit-FIFO-data-empty interrupt enabled 
   494 	 * Bit 6 => Receive-data-full interrupt enabled 
   495 	 * Bit 5 => Transmit enable 
   496 	 * Bit 4 => Receive enable 
   497 	 * Bit 3 => Receive-error/break interrupt enabled
   498 	 * Bit 1 => Clock enable
   499 	 */
   500 	val &= 0x00FA;
   501 	/* Clear any interrupts that just became disabled */
   502 	if( val & SCSCR2_TIE == 0 )
   503 	    intc_clear_interrupt( INT_SCIF_TXI );
   504 	if( val & SCSCR2_RIE == 0 )
   505 	    intc_clear_interrupt( INT_SCIF_RXI );
   506 	if( val & (SCSCR2_RIE|SCSCR2_REIE) == 0 ) {
   507 	    intc_clear_interrupt( INT_SCIF_ERI );
   508 	    intc_clear_interrupt( INT_SCIF_BRI );
   509 	}
   511 	MMIO_WRITE( SCIF, reg, val );
   512 	break;
   513     case SCFTDR2: /* Transmit FIFO data register */
   514 	SCIF_sendq_enqueue( val, FALSE );
   515 	break;
   516     case SCFSR2: /* Serial status register */
   517 	/* Bits 12-15 Parity error count
   518 	 * Bits 8-11 Framing erro count 
   519 	 * Bit 7 - Receive error
   520 	 * Bit 6 - Transmit end
   521 	 * Bit 5 - Transmit FIFO data empty
   522 	 * Bit 4 - Break detect
   523 	 * Bit 3 - Framing error
   524 	 * Bit 2 - Parity error
   525 	 * Bit 1 - Receive FIFO data full
   526 	 * Bit 0 - Receive data ready
   527 	 */
   528 	/* Clear off any flags/interrupts that are being set to 0 */
   529 	SCIF_update_status( val );
   530 	break;
   531     case SCFCR2: /* FIFO control register */
   532 	val &= 0x0F;
   533 	SCIF_recvq.trigger = SCIF_recvq_triggers[val >> 6];
   534 	SCIF_sendq.trigger = SCIF_sendq_triggers[(val >> 4) & 0x03];
   535 	if( val & SCFCR2_TFRST ) {
   536 	    SCIF_sendq_clear();
   537 	}
   538 	if( val & SCFCR2_RFRST ) {
   539 	    SCIF_recvq_clear();
   540 	}
   542 	MMIO_WRITE( SCIF, reg, val );
   543 	break;
   544     case SCSPTR2: /* Serial Port Register */
   545 	MMIO_WRITE( SCIF, reg, val );
   546 	/* NOT IMPLEMENTED */
   547 	WARN( "SCSPTR2 not implemented: Write %08X", val );
   548 	break;
   549     case SCLSR2:
   550 	val = val & SCLSR2_ORER;
   551 	if( val == 0 ) {
   552 	    MMIO_WRITE( SCIF, SCLSR2, val );
   553 	    if( (MMIO_READ( SCIF, SCFSR2 ) & SCFSR2_ER) == 0 &&
   554 		IS_RECEIVE_ERROR_IRQ_ENABLED() ) 
   555 		intc_clear_interrupt( INT_SCIF_ERI );
   556 	}
   558 	break;
   559     }
   560 }
   562 /**
   563  * Actions for a single tick of the serial clock, defined as the transmission
   564  * time of a single frame.
   565  *
   566  * If transmit queue is non-empty:
   567  *    Transmit one byte and remove from queue
   568  * If input receive source is non-empty:
   569  *    Transfer one byte to the receive queue (if queue is full, byte is lost)
   570  * If recvq is non-empty, less than the trigger level, and no data has been
   571  *    received in the last 2 ticks (including this one), set the DR flag and
   572  *    IRQ if appropriate.
   573  */
   574 void SCIF_clock_tick( void ) 
   575 {
   576     gboolean rcvd = FALSE;
   578     if( IS_LOOPBACK_ENABLED() ) {
   579 	if( IS_TRANSMIT_ENABLED() ) {
   580 	    int val = SCIF_sendq_dequeue();
   581 	    if( val != -1 && IS_RECEIVE_ENABLED() ) {
   582 		SCIF_recvq_enqueue( val );
   583 		rcvd = TRUE;
   584 	    }
   585 	}
   586     } else {
   587 	if( IS_TRANSMIT_ENABLED() ) {
   588 	    int val = SCIF_sendq_dequeue();
   589 	    if( val != -1 && serial_device != NULL && 
   590 		serial_device->receive_data != NULL ) {
   591 		serial_device->receive_data( val );
   592 	    }
   593 	}
   595 	if( IS_RECEIVE_ENABLED() ) {
   596 	    int val = serial_transmit_dequeue();
   597 	    if( val != -1 ) {
   598 		SCIF_recvq_enqueue( val );
   599 		rcvd = TRUE;
   600 	    }
   601 	}
   602     }
   604     /* Check if we need to set the DR flag */
   605     if( !rcvd && !SCIF_rcvd_last_tick &&
   606 	SCIF_recvq.head != SCIF_recvq.tail &&
   607 	SCIF_recvq_size() < SCIF_recvq.trigger ) {
   608 	uint32_t tmp = MMIO_READ( SCIF, SCFSR2 );
   609 	if( tmp & SCFSR2_DR == 0 ) {
   610 	    MMIO_WRITE( SCIF, SCFSR2, tmp | SCFSR2_DR );
   611 	    if( IS_RECEIVE_IRQ_ENABLED() )
   612 		intc_raise_interrupt( INT_SCIF_RXI );
   613 	}
   614     }
   615     SCIF_rcvd_last_tick = rcvd;
   616 }
   618 void SCIF_reset( void )
   619 {
   620     SCIF_recvq_clear();
   621     SCIF_sendq_clear();
   622     SCIF_update_line_speed();
   623 }
   625 void SCIF_run_slice( uint32_t nanosecs ) 
   626 {
   627     SCIF_tick_remainder += nanosecs;
   628     while( SCIF_tick_remainder >= SCIF_tick_period ) {
   629 	SCIF_tick_remainder -= SCIF_tick_period;
   630 	SCIF_clock_tick();
   631     }
   632 }
.