Search
lxdream.org :: lxdream/src/asic.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/asic.c
changeset 188:91ee93613faa
prev186:79bfebd5e0ff
next240:9ae4bd697292
author nkeynes
date Fri Aug 04 01:38:30 2006 +0000 (17 years ago)
permissions -rw-r--r--
last change Add more tile list limit tests
Implement tile list limits in the ta core.
Rename TA_TILEEND to TA_LISTEND
view annotate diff log raw
     1 /**
     2  * $Id: asic.c,v 1.19 2006-08-01 21:56:48 nkeynes Exp $
     3  *
     4  * Support for the miscellaneous ASIC functions (Primarily event multiplexing,
     5  * and DMA). 
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE asic_module
    22 #include <assert.h>
    23 #include <stdlib.h>
    24 #include "dream.h"
    25 #include "mem.h"
    26 #include "sh4/intc.h"
    27 #include "sh4/dmac.h"
    28 #include "dreamcast.h"
    29 #include "maple/maple.h"
    30 #include "gdrom/ide.h"
    31 #include "asic.h"
    32 #define MMIO_IMPL
    33 #include "asic.h"
    34 /*
    35  * Open questions:
    36  *   1) Does changing the mask after event occurance result in the
    37  *      interrupt being delivered immediately?
    38  * TODO: Logic diagram of ASIC event/interrupt logic.
    39  *
    40  * ... don't even get me started on the "EXTDMA" page, about which, apparently,
    41  * practically nothing is publicly known...
    42  */
    44 static void asic_check_cleared_events( void );
    45 static void asic_init( void );
    46 static void asic_reset( void );
    47 static void asic_save_state( FILE *f );
    48 static int asic_load_state( FILE *f );
    50 struct dreamcast_module asic_module = { "ASIC", asic_init, asic_reset, NULL, NULL,
    51 					NULL, asic_save_state, asic_load_state };
    53 #define G2_BIT5_TICKS 8
    54 #define G2_BIT4_TICKS 16
    55 #define G2_BIT0_ON_TICKS 24
    56 #define G2_BIT0_OFF_TICKS 24
    58 struct asic_g2_state {
    59     unsigned int last_update_time;
    60     unsigned int bit5_off_timer;
    61     unsigned int bit4_on_timer;
    62     unsigned int bit4_off_timer;
    63     unsigned int bit0_on_timer;
    64     unsigned int bit0_off_timer;
    65 };
    67 static struct asic_g2_state g2_state;
    69 static void asic_init( void )
    70 {
    71     register_io_region( &mmio_region_ASIC );
    72     register_io_region( &mmio_region_EXTDMA );
    73     asic_reset();
    74 }
    76 static void asic_reset( void )
    77 {
    78     memset( &g2_state, 0, sizeof(g2_state) );
    79 }    
    81 static void asic_save_state( FILE *f )
    82 {
    83     fwrite( &g2_state, sizeof(g2_state), 1, f );
    84 }
    86 static int asic_load_state( FILE *f )
    87 {
    88     if( fread( &g2_state, sizeof(g2_state), 1, f ) != 1 )
    89 	return 1;
    90     else
    91 	return 0;
    92 }
    95 /* FIXME: Handle rollover */
    96 void asic_g2_write_word()
    97 {
    98     g2_state.last_update_time = sh4r.icount;
    99     g2_state.bit5_off_timer = sh4r.icount + G2_BIT5_TICKS;
   100     if( g2_state.bit4_off_timer < sh4r.icount )
   101 	g2_state.bit4_on_timer = sh4r.icount + G2_BIT5_TICKS;
   102     g2_state.bit4_off_timer = max(sh4r.icount,g2_state.bit4_off_timer) + G2_BIT4_TICKS;
   103     if( g2_state.bit0_off_timer < sh4r.icount ) {
   104 	g2_state.bit0_on_timer = sh4r.icount + G2_BIT0_ON_TICKS;
   105 	g2_state.bit0_off_timer = g2_state.bit0_on_timer + G2_BIT0_OFF_TICKS;
   106     } else {
   107 	g2_state.bit0_off_timer += G2_BIT0_OFF_TICKS;
   108     }
   109     MMIO_WRITE( ASIC, G2STATUS, MMIO_READ(ASIC, G2STATUS) | 0x20 );
   110 }
   112 static uint32_t g2_read_status()
   113 {
   114     if( sh4r.icount < g2_state.last_update_time ) {
   115 	/* Rollover */
   116 	if( g2_state.last_update_time < g2_state.bit5_off_timer )
   117 	    g2_state.bit5_off_timer = 0;
   118 	if( g2_state.last_update_time < g2_state.bit4_off_timer )
   119 	    g2_state.bit4_off_timer = 0;
   120 	if( g2_state.last_update_time < g2_state.bit4_on_timer )
   121 	    g2_state.bit4_on_timer = 0;
   122 	if( g2_state.last_update_time < g2_state.bit0_off_timer )
   123 	    g2_state.bit0_off_timer = 0;
   124 	if( g2_state.last_update_time < g2_state.bit0_on_timer )
   125 	    g2_state.bit0_on_timer = 0;
   126     }
   127     uint32_t val = MMIO_READ( ASIC, G2STATUS );
   128     if( g2_state.bit5_off_timer <= sh4r.icount )
   129 	val = val & (~0x20);
   130     if( g2_state.bit4_off_timer <= sh4r.icount ||
   131 	(sh4r.icount + G2_BIT5_TICKS) < g2_state.bit4_off_timer )
   132 	val = val & (~0x10);
   133     else if( g2_state.bit4_on_timer <= sh4r.icount )
   134 	val = val | 0x10;
   135     if( g2_state.bit0_off_timer <= sh4r.icount )
   136 	val = val & (~0x01);
   137     else if( g2_state.bit0_on_timer <= sh4r.icount )
   138 	val = val | 0x01;
   139     return val | 0x0E;
   140 }   
   143 void asic_event( int event )
   144 {
   145     int offset = ((event&0x60)>>3);
   146     int result = (MMIO_READ(ASIC, PIRQ0 + offset))  |=  (1<<(event&0x1F));
   148     if( result & MMIO_READ(ASIC, IRQA0 + offset) )
   149         intc_raise_interrupt( INT_IRQ13 );
   150     if( result & MMIO_READ(ASIC, IRQB0 + offset) )
   151         intc_raise_interrupt( INT_IRQ11 );
   152     if( result & MMIO_READ(ASIC, IRQC0 + offset) )
   153         intc_raise_interrupt( INT_IRQ9 );
   154 }
   156 void asic_clear_event( int event ) {
   157     int offset = ((event&0x60)>>3);
   158     uint32_t result = MMIO_READ(ASIC, PIRQ0 + offset)  & (~(1<<(event&0x1F)));
   159     MMIO_WRITE( ASIC, PIRQ0 + offset, result );
   161     asic_check_cleared_events();
   162 }
   164 void asic_check_cleared_events( )
   165 {
   166     int i, setA = 0, setB = 0, setC = 0;
   167     uint32_t bits;
   168     for( i=0; i<3; i++ ) {
   169 	bits = MMIO_READ( ASIC, PIRQ0 + i );
   170 	setA |= (bits & MMIO_READ(ASIC, IRQA0 + i ));
   171 	setB |= (bits & MMIO_READ(ASIC, IRQB0 + i ));
   172 	setC |= (bits & MMIO_READ(ASIC, IRQC0 + i ));
   173     }
   174     if( setA == 0 )
   175 	intc_clear_interrupt( INT_IRQ13 );
   176     if( setB == 0 )
   177 	intc_clear_interrupt( INT_IRQ11 );
   178     if( setC == 0 )
   179 	intc_clear_interrupt( INT_IRQ9 );
   180 }
   183 void asic_ide_dma_transfer( )
   184 {	
   185     if( MMIO_READ( EXTDMA, IDEDMACTL2 ) == 1 ) {
   186 	if( MMIO_READ( EXTDMA, IDEDMACTL1 ) == 1 ) {
   187 	    MMIO_WRITE( EXTDMA, IDEDMATXSIZ, 0 );
   189 	    uint32_t addr = MMIO_READ( EXTDMA, IDEDMASH4 );
   190 	    uint32_t length = MMIO_READ( EXTDMA, IDEDMASIZ );
   191 	    int dir = MMIO_READ( EXTDMA, IDEDMADIR );
   193 	    uint32_t xfer = ide_read_data_dma( addr, length );
   194 	    MMIO_WRITE( EXTDMA, IDEDMATXSIZ, xfer );
   195 	    MMIO_WRITE( EXTDMA, IDEDMACTL2, 0 );
   196 	} else { /* 0 */
   197 	    MMIO_WRITE( EXTDMA, IDEDMACTL2, 0 );
   198 	}
   199     }
   201 }
   204 void mmio_region_ASIC_write( uint32_t reg, uint32_t val )
   205 {
   206     switch( reg ) {
   207     case PIRQ1:
   208 	val = val & 0xFFFFFFFE; /* Prevent the IDE event from clearing */
   209 	/* fallthrough */
   210     case PIRQ0:
   211     case PIRQ2:
   212 	/* Clear any interrupts */
   213 	MMIO_WRITE( ASIC, reg, MMIO_READ(ASIC, reg)&~val );
   214 	asic_check_cleared_events();
   215 	break;
   216     case MAPLE_STATE:
   217 	MMIO_WRITE( ASIC, reg, val );
   218 	if( val & 1 ) {
   219 	    uint32_t maple_addr = MMIO_READ( ASIC, MAPLE_DMA) &0x1FFFFFE0;
   220 	    maple_handle_buffer( maple_addr );
   221 	    MMIO_WRITE( ASIC, reg, 0 );
   222 	}
   223 	break;
   224     case PVRDMACTL: /* Initiate PVR DMA transfer */
   225 	MMIO_WRITE( ASIC, reg, val );
   226 	if( val & 1 ) {
   227 	    uint32_t dest_addr = MMIO_READ( ASIC, PVRDMADEST) &0x1FFFFFE0;
   228 	    uint32_t count = MMIO_READ( ASIC, PVRDMACNT );
   229 	    char *data = alloca( count );
   230 	    uint32_t rcount = DMAC_get_buffer( 2, data, count );
   231 	    if( rcount != count )
   232 		WARN( "PVR received %08X bytes from DMA, expected %08X", rcount, count );
   233 	    mem_copy_to_sh4( dest_addr, data, rcount );
   234 	    asic_event( EVENT_PVR_DMA );
   235 	    MMIO_WRITE( ASIC, PVRDMACTL, 0 );
   236 	    MMIO_WRITE( ASIC, PVRDMACNT, 0 );
   237 	}
   238 	break;
   239     case PVRDMADEST: case PVRDMACNT: case MAPLE_DMA:
   240 	MMIO_WRITE( ASIC, reg, val );
   241 	break;
   242     default:
   243 	MMIO_WRITE( ASIC, reg, val );
   244     }
   245 }
   247 int32_t mmio_region_ASIC_read( uint32_t reg )
   248 {
   249     int32_t val;
   250     switch( reg ) {
   251         /*
   252         case 0x89C:
   253             sh4_stop();
   254             return 0x000000B;
   255         */     
   256     case PIRQ0:
   257     case PIRQ1:
   258     case PIRQ2:
   259     case IRQA0:
   260     case IRQA1:
   261     case IRQA2:
   262     case IRQB0:
   263     case IRQB1:
   264     case IRQB2:
   265     case IRQC0:
   266     case IRQC1:
   267     case IRQC2:
   268     case MAPLE_STATE:
   269 	val = MMIO_READ(ASIC, reg);
   270 	return val;            
   271     case G2STATUS:
   272 	return g2_read_status();
   273     default:
   274 	val = MMIO_READ(ASIC, reg);
   275 	return val;
   276     }
   278 }
   280 MMIO_REGION_WRITE_FN( EXTDMA, reg, val )
   281 {
   282     switch( reg ) {
   283     case IDEALTSTATUS: /* Device control */
   284 	ide_write_control( val );
   285 	break;
   286     case IDEDATA:
   287 	ide_write_data_pio( val );
   288 	break;
   289     case IDEFEAT:
   290 	if( ide_can_write_regs() )
   291 	    idereg.feature = (uint8_t)val;
   292 	break;
   293     case IDECOUNT:
   294 	if( ide_can_write_regs() )
   295 	    idereg.count = (uint8_t)val;
   296 	break;
   297     case IDELBA0:
   298 	if( ide_can_write_regs() )
   299 	    idereg.lba0 = (uint8_t)val;
   300 	break;
   301     case IDELBA1:
   302 	if( ide_can_write_regs() )
   303 	    idereg.lba1 = (uint8_t)val;
   304 	break;
   305     case IDELBA2:
   306 	if( ide_can_write_regs() )
   307 	    idereg.lba2 = (uint8_t)val;
   308 	break;
   309     case IDEDEV:
   310 	if( ide_can_write_regs() )
   311 	    idereg.device = (uint8_t)val;
   312 	break;
   313     case IDECMD:
   314 	if( ide_can_write_regs() ) {
   315 	    ide_write_command( (uint8_t)val );
   316 	}
   317 	break;
   318     case IDEDMACTL1:
   319 	MMIO_WRITE( EXTDMA, reg, val );
   320     case IDEDMACTL2:
   321 	MMIO_WRITE( EXTDMA, reg, val );
   322 	asic_ide_dma_transfer( );
   323 	break;
   324     default:
   325             MMIO_WRITE( EXTDMA, reg, val );
   326     }
   327 }
   329 MMIO_REGION_READ_FN( EXTDMA, reg )
   330 {
   331     uint32_t val;
   332     switch( reg ) {
   333     case IDEALTSTATUS: 
   334 	val = idereg.status;
   335 	return val;
   336     case IDEDATA: return ide_read_data_pio( );
   337     case IDEFEAT: return idereg.error;
   338     case IDECOUNT:return idereg.count;
   339     case IDELBA0: return idereg.disc;
   340     case IDELBA1: return idereg.lba1;
   341     case IDELBA2: return idereg.lba2;
   342     case IDEDEV: return idereg.device;
   343     case IDECMD:
   344 	val = ide_read_status();
   345 	return val;
   346     default:
   347 	val = MMIO_READ( EXTDMA, reg );
   348 	return val;
   349     }
   350 }
.