Search
lxdream.org :: lxdream/src/sh4/sh4core.in
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4core.in
changeset 758:99ae000d4e09
prev740:dd11269ee48b
next927:17b6b9e245d8
author nkeynes
date Sun Oct 26 02:28:29 2008 +0000 (15 years ago)
permissions -rw-r--r--
last change Move the precision/size tests to translation-time rather than execution-time,
and flush/retranslate on a mismatch. Shaves a few percent off the core runtime
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 emulation core, and parent module for all the SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <assert.h>
    22 #include <math.h>
    23 #include "dream.h"
    24 #include "dreamcast.h"
    25 #include "eventq.h"
    26 #include "mem.h"
    27 #include "clock.h"
    28 #include "syscall.h"
    29 #include "sh4/sh4core.h"
    30 #include "sh4/sh4mmio.h"
    31 #include "sh4/sh4stat.h"
    32 #include "sh4/intc.h"
    34 #define SH4_CALLTRACE 1
    36 #define MAX_INT 0x7FFFFFFF
    37 #define MIN_INT 0x80000000
    38 #define MAX_INTF 2147483647.0
    39 #define MIN_INTF -2147483648.0
    41 /********************** SH4 Module Definition ****************************/
    43 uint32_t sh4_emulate_run_slice( uint32_t nanosecs ) 
    44 {
    45     int i;
    47     if( sh4_breakpoint_count == 0 ) {
    48 	for( ; sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
    49 	    if( SH4_EVENT_PENDING() ) {
    50 		if( sh4r.event_types & PENDING_EVENT ) {
    51 		    event_execute();
    52 		}
    53 		/* Eventq execute may (quite likely) deliver an immediate IRQ */
    54 		if( sh4r.event_types & PENDING_IRQ ) {
    55 		    sh4_accept_interrupt();
    56 		}
    57 	    }
    58 	    if( !sh4_execute_instruction() ) {
    59 		break;
    60 	    }
    61 	}
    62     } else {
    63 	for( ;sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
    64 	    if( SH4_EVENT_PENDING() ) {
    65 		if( sh4r.event_types & PENDING_EVENT ) {
    66 		    event_execute();
    67 		}
    68 		/* Eventq execute may (quite likely) deliver an immediate IRQ */
    69 		if( sh4r.event_types & PENDING_IRQ ) {
    70 		    sh4_accept_interrupt();
    71 		}
    72 	    }
    74 	    if( !sh4_execute_instruction() )
    75 		break;
    76 #ifdef ENABLE_DEBUG_MODE
    77 	    for( i=0; i<sh4_breakpoint_count; i++ ) {
    78 		if( sh4_breakpoints[i].address == sh4r.pc ) {
    79 		    break;
    80 		}
    81 	    }
    82 	    if( i != sh4_breakpoint_count ) {
    83 	    	sh4_core_exit( CORE_EXIT_BREAKPOINT );
    84 	    }
    85 #endif	
    86 	}
    87     }
    89     /* If we aborted early, but the cpu is still technically running,
    90      * we're doing a hard abort - cut the timeslice back to what we
    91      * actually executed
    92      */
    93     if( sh4r.slice_cycle != nanosecs && sh4r.sh4_state == SH4_STATE_RUNNING ) {
    94 	nanosecs = sh4r.slice_cycle;
    95     }
    96     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
    97 	TMU_run_slice( nanosecs );
    98 	SCIF_run_slice( nanosecs );
    99     }
   100     return nanosecs;
   101 }
   103 /********************** SH4 emulation core  ****************************/
   105 #define UNDEF(ir) return sh4_raise_slot_exception(EXC_ILLEGAL, EXC_SLOT_ILLEGAL)
   106 #define UNIMP(ir) do{ ERROR( "Halted on unimplemented instruction at %08x, opcode = %04x", sh4r.pc, ir ); sh4_core_exit(CORE_EXIT_HALT); return FALSE; }while(0)
   108 #if(SH4_CALLTRACE == 1)
   109 #define MAX_CALLSTACK 32
   110 static struct call_stack {
   111     sh4addr_t call_addr;
   112     sh4addr_t target_addr;
   113     sh4addr_t stack_pointer;
   114 } call_stack[MAX_CALLSTACK];
   116 static int call_stack_depth = 0;
   117 int sh4_call_trace_on = 0;
   119 static inline void trace_call( sh4addr_t source, sh4addr_t dest ) 
   120 {
   121     if( call_stack_depth < MAX_CALLSTACK ) {
   122 	call_stack[call_stack_depth].call_addr = source;
   123 	call_stack[call_stack_depth].target_addr = dest;
   124 	call_stack[call_stack_depth].stack_pointer = sh4r.r[15];
   125     }
   126     call_stack_depth++;
   127 }
   129 static inline void trace_return( sh4addr_t source, sh4addr_t dest )
   130 {
   131     if( call_stack_depth > 0 ) {
   132 	call_stack_depth--;
   133     }
   134 }
   136 void fprint_stack_trace( FILE *f )
   137 {
   138     int i = call_stack_depth -1;
   139     if( i >= MAX_CALLSTACK )
   140 	i = MAX_CALLSTACK - 1;
   141     for( ; i >= 0; i-- ) {
   142 	fprintf( f, "%d. Call from %08X => %08X, SP=%08X\n", 
   143 		 (call_stack_depth - i), call_stack[i].call_addr,
   144 		 call_stack[i].target_addr, call_stack[i].stack_pointer );
   145     }
   146 }
   148 #define TRACE_CALL( source, dest ) trace_call(source, dest)
   149 #define TRACE_RETURN( source, dest ) trace_return(source, dest)
   150 #else
   151 #define TRACE_CALL( dest, rts ) 
   152 #define TRACE_RETURN( source, dest )
   153 #endif
   155 #define CHECKPRIV() if( !IS_SH4_PRIVMODE() ) return sh4_raise_slot_exception( EXC_ILLEGAL, EXC_SLOT_ILLEGAL )
   156 #define CHECKRALIGN16(addr) if( (addr)&0x01 ) return sh4_raise_exception( EXC_DATA_ADDR_READ )
   157 #define CHECKRALIGN32(addr) if( (addr)&0x03 ) return sh4_raise_exception( EXC_DATA_ADDR_READ )
   158 #define CHECKRALIGN64(addr) if( (addr)&0x07 ) return sh4_raise_exception( EXC_DATA_ADDR_READ )
   159 #define CHECKWALIGN16(addr) if( (addr)&0x01 ) return sh4_raise_exception( EXC_DATA_ADDR_WRITE )
   160 #define CHECKWALIGN32(addr) if( (addr)&0x03 ) return sh4_raise_exception( EXC_DATA_ADDR_WRITE )
   161 #define CHECKWALIGN64(addr) if( (addr)&0x07 ) return sh4_raise_exception( EXC_DATA_ADDR_WRITE )
   163 #define CHECKFPUEN() if( !IS_FPU_ENABLED() ) { if( ir == 0xFFFD ) { UNDEF(ir); } else { return sh4_raise_slot_exception( EXC_FPU_DISABLED, EXC_SLOT_FPU_DISABLED ); } }
   164 #define CHECKDEST(p) if( (p) == 0 ) { ERROR( "%08X: Branch/jump to NULL, CPU halted", sh4r.pc ); sh4_core_exit(CORE_EXIT_HALT); return FALSE; }
   165 #define CHECKSLOTILLEGAL() if(sh4r.in_delay_slot) return sh4_raise_exception(EXC_SLOT_ILLEGAL)
   167 #define MEM_READ_BYTE( addr, val ) memtmp = mmu_vma_to_phys_read(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { val = sh4_read_byte(memtmp); }
   168 #define MEM_READ_WORD( addr, val ) memtmp = mmu_vma_to_phys_read(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { val = sh4_read_word(memtmp); }
   169 #define MEM_READ_LONG( addr, val ) memtmp = mmu_vma_to_phys_read(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { val = sh4_read_long(memtmp); }
   170 #define MEM_WRITE_BYTE( addr, val ) memtmp = mmu_vma_to_phys_write(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { sh4_write_byte(memtmp, val); }
   171 #define MEM_WRITE_WORD( addr, val ) memtmp = mmu_vma_to_phys_write(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { sh4_write_word(memtmp, val); }
   172 #define MEM_WRITE_LONG( addr, val ) memtmp = mmu_vma_to_phys_write(addr); if( memtmp == MMU_VMA_ERROR ) { return TRUE; } else { sh4_write_long(memtmp, val); }
   174 #define FP_WIDTH (IS_FPU_DOUBLESIZE() ? 8 : 4)
   176 #define MEM_FP_READ( addr, reg ) \
   177     if( IS_FPU_DOUBLESIZE() ) { \
   178 	CHECKRALIGN64(addr); \
   179 	memtmp = mmu_vma_to_phys_read(addr); \
   180 	if( memtmp == MMU_VMA_ERROR ) { \
   181 	    return TRUE; \
   182 	} else { \
   183 	    if( reg & 1 ) { \
   184                 *((uint32_t *)&XF((reg) & 0x0E)) = sh4_read_long(memtmp); \
   185 	        *((uint32_t *)&XF(reg)) = sh4_read_long(memtmp+4); \
   186 	    } else { \
   187 	        *((uint32_t *)&FR(reg)) = sh4_read_long(memtmp); \
   188 	        *((uint32_t *)&FR((reg) | 0x01)) = sh4_read_long(memtmp+4); \
   189 	    } \
   190 	} \
   191     } else { \
   192         CHECKRALIGN32(addr); \
   193         memtmp = mmu_vma_to_phys_read(addr); \
   194         if( memtmp == MMU_VMA_ERROR ) { \
   195             return TRUE; \
   196         } else { \
   197 	    *((uint32_t *)&FR(reg)) = sh4_read_long(memtmp); \
   198 	} \
   199     }
   200 #define MEM_FP_WRITE( addr, reg ) \
   201     if( IS_FPU_DOUBLESIZE() ) { \
   202         CHECKWALIGN64(addr); \
   203 	memtmp = mmu_vma_to_phys_write(addr); \
   204 	if( memtmp == MMU_VMA_ERROR ) { \
   205 	    return TRUE; \
   206 	} else { \
   207             if( reg & 1 ) { \
   208 	        sh4_write_long( memtmp, *((uint32_t *)&XF((reg)&0x0E)) ); \
   209 	        sh4_write_long( memtmp+4, *((uint32_t *)&XF(reg)) ); \
   210 	    } else { \
   211 	        sh4_write_long( memtmp, *((uint32_t *)&FR(reg)) ); \
   212 	        sh4_write_long( memtmp+4, *((uint32_t *)&FR((reg)|0x01)) ); \
   213 	    } \
   214 	} \
   215     } else { \
   216     	CHECKWALIGN32(addr); \
   217 	memtmp = mmu_vma_to_phys_write(addr); \
   218 	if( memtmp == MMU_VMA_ERROR ) { \
   219 	    return TRUE; \
   220 	} else { \
   221 	    sh4_write_long( memtmp, *((uint32_t *)&FR((reg))) ); \
   222 	} \
   223     }
   225 gboolean sh4_execute_instruction( void )
   226 {
   227     uint32_t pc;
   228     unsigned short ir;
   229     uint32_t tmp;
   230     float ftmp;
   231     double dtmp;
   232     int64_t memtmp; // temporary holder for memory reads
   234 #define R0 sh4r.r[0]
   235     pc = sh4r.pc;
   236     if( pc > 0xFFFFFF00 ) {
   237 	/* SYSCALL Magic */
   238 	syscall_invoke( pc );
   239 	sh4r.in_delay_slot = 0;
   240 	pc = sh4r.pc = sh4r.pr;
   241 	sh4r.new_pc = sh4r.pc + 2;
   242         return TRUE;
   243     }
   244     CHECKRALIGN16(pc);
   246 #ifdef ENABLE_SH4STATS
   247     sh4_stats_add_by_pc(sh4r.pc);
   248 #endif
   250     /* Read instruction */
   251     if( !IS_IN_ICACHE(pc) ) {
   252 	if( !mmu_update_icache(pc) ) {
   253 	    // Fault - look for the fault handler
   254 	    if( !mmu_update_icache(sh4r.pc) ) {
   255 		// double fault - halt
   256 		ERROR( "Double fault - halting" );
   257 		sh4_core_exit(CORE_EXIT_HALT);
   258 		return FALSE;
   259 	    }
   260 	}
   261 	pc = sh4r.pc;
   262     }
   263     assert( IS_IN_ICACHE(pc) );
   264     ir = *(uint16_t *)GET_ICACHE_PTR(sh4r.pc);
   265 %%
   266 AND Rm, Rn {: sh4r.r[Rn] &= sh4r.r[Rm]; :}
   267 AND #imm, R0 {: R0 &= imm; :}
   268  AND.B #imm, @(R0, GBR) {: MEM_READ_BYTE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm & tmp ); :}
   269 NOT Rm, Rn {: sh4r.r[Rn] = ~sh4r.r[Rm]; :}
   270 OR Rm, Rn {: sh4r.r[Rn] |= sh4r.r[Rm]; :}
   271 OR #imm, R0  {: R0 |= imm; :}
   272  OR.B #imm, @(R0, GBR) {: MEM_READ_BYTE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm | tmp ); :}
   273 TAS.B @Rn {:
   274     MEM_READ_BYTE( sh4r.r[Rn], tmp );
   275     sh4r.t = ( tmp == 0 ? 1 : 0 );
   276     MEM_WRITE_BYTE( sh4r.r[Rn], tmp | 0x80 );
   277 :}
   278 TST Rm, Rn {: sh4r.t = (sh4r.r[Rn]&sh4r.r[Rm] ? 0 : 1); :}
   279 TST #imm, R0 {: sh4r.t = (R0 & imm ? 0 : 1); :}
   280  TST.B #imm, @(R0, GBR) {: MEM_READ_BYTE(R0+sh4r.gbr, tmp); sh4r.t = ( tmp & imm ? 0 : 1 ); :}
   281 XOR Rm, Rn {: sh4r.r[Rn] ^= sh4r.r[Rm]; :}
   282 XOR #imm, R0 {: R0 ^= imm; :}
   283  XOR.B #imm, @(R0, GBR) {: MEM_READ_BYTE(R0+sh4r.gbr, tmp); MEM_WRITE_BYTE( R0 + sh4r.gbr, imm ^ tmp ); :}
   284 XTRCT Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rn]>>16) | (sh4r.r[Rm]<<16); :}
   286 ROTL Rn {:
   287     sh4r.t = sh4r.r[Rn] >> 31;
   288     sh4r.r[Rn] <<= 1;
   289     sh4r.r[Rn] |= sh4r.t;
   290 :}
   291 ROTR Rn {:
   292     sh4r.t = sh4r.r[Rn] & 0x00000001;
   293     sh4r.r[Rn] >>= 1;
   294     sh4r.r[Rn] |= (sh4r.t << 31);
   295 :}
   296 ROTCL Rn {:
   297     tmp = sh4r.r[Rn] >> 31;
   298     sh4r.r[Rn] <<= 1;
   299     sh4r.r[Rn] |= sh4r.t;
   300     sh4r.t = tmp;
   301 :}
   302 ROTCR Rn {:
   303     tmp = sh4r.r[Rn] & 0x00000001;
   304     sh4r.r[Rn] >>= 1;
   305     sh4r.r[Rn] |= (sh4r.t << 31 );
   306     sh4r.t = tmp;
   307 :}
   308 SHAD Rm, Rn {:
   309     tmp = sh4r.r[Rm];
   310     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   311     else if( (tmp & 0x1F) == 0 )  
   312         sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 31;
   313     else 
   314 	sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> (((~sh4r.r[Rm]) & 0x1F)+1);
   315 :}
   316 SHLD Rm, Rn {:
   317     tmp = sh4r.r[Rm];
   318     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   319     else if( (tmp & 0x1F) == 0 ) sh4r.r[Rn] = 0;
   320     else sh4r.r[Rn] >>= (((~tmp) & 0x1F)+1);
   321 :}
   322 SHAL Rn {:
   323     sh4r.t = sh4r.r[Rn] >> 31;
   324     sh4r.r[Rn] <<= 1;
   325 :}
   326 SHAR Rn {:
   327     sh4r.t = sh4r.r[Rn] & 0x00000001;
   328     sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 1;
   329 :}
   330 SHLL Rn {: sh4r.t = sh4r.r[Rn] >> 31; sh4r.r[Rn] <<= 1; :}
   331 SHLR Rn {: sh4r.t = sh4r.r[Rn] & 0x00000001; sh4r.r[Rn] >>= 1; :}
   332 SHLL2 Rn {: sh4r.r[Rn] <<= 2; :}
   333 SHLR2 Rn {: sh4r.r[Rn] >>= 2; :}
   334 SHLL8 Rn {: sh4r.r[Rn] <<= 8; :}
   335 SHLR8 Rn {: sh4r.r[Rn] >>= 8; :}
   336 SHLL16 Rn {: sh4r.r[Rn] <<= 16; :}
   337 SHLR16 Rn {: sh4r.r[Rn] >>= 16; :}
   339 EXTU.B Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x000000FF; :}
   340 EXTU.W Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x0000FFFF; :}
   341 EXTS.B Rm, Rn {: sh4r.r[Rn] = SIGNEXT8( sh4r.r[Rm]&0x000000FF ); :}
   342 EXTS.W Rm, Rn {: sh4r.r[Rn] = SIGNEXT16( sh4r.r[Rm]&0x0000FFFF ); :}
   343 SWAP.B Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]&0xFFFF0000) | ((sh4r.r[Rm]&0x0000FF00)>>8) | ((sh4r.r[Rm]&0x000000FF)<<8); :}
   344 SWAP.W Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]>>16) | (sh4r.r[Rm]<<16); :}
   346 CLRT {: sh4r.t = 0; :}
   347 SETT {: sh4r.t = 1; :}
   348 CLRMAC {: sh4r.mac = 0; :}
   349 LDTLB {: MMU_ldtlb(); :}
   350 CLRS {: sh4r.s = 0; :}
   351 SETS {: sh4r.s = 1; :}
   352 MOVT Rn {: sh4r.r[Rn] = sh4r.t; :}
   353 NOP {: /* NOP */ :}
   355 PREF @Rn {:
   356      tmp = sh4r.r[Rn];
   357      if( (tmp & 0xFC000000) == 0xE0000000 ) {
   358 	 sh4_flush_store_queue(tmp);
   359      }
   360 :}
   361 OCBI @Rn {: :}
   362 OCBP @Rn {: :}
   363 OCBWB @Rn {: :}
   364 MOVCA.L R0, @Rn {:
   365     tmp = sh4r.r[Rn];
   366     CHECKWALIGN32(tmp);
   367     MEM_WRITE_LONG( tmp, R0 );
   368 :}
   369 MOV.B Rm, @(R0, Rn) {: MEM_WRITE_BYTE( R0 + sh4r.r[Rn], sh4r.r[Rm] ); :}
   370 MOV.W Rm, @(R0, Rn) {: 
   371     CHECKWALIGN16( R0 + sh4r.r[Rn] );
   372     MEM_WRITE_WORD( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   373 :}
   374 MOV.L Rm, @(R0, Rn) {:
   375     CHECKWALIGN32( R0 + sh4r.r[Rn] );
   376     MEM_WRITE_LONG( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   377 :}
   378 MOV.B @(R0, Rm), Rn {: MEM_READ_BYTE( R0 + sh4r.r[Rm], sh4r.r[Rn] ); :}
   379 MOV.W @(R0, Rm), Rn {: CHECKRALIGN16( R0 + sh4r.r[Rm] );
   380     MEM_READ_WORD( R0 + sh4r.r[Rm], sh4r.r[Rn] );
   381 :}
   382 MOV.L @(R0, Rm), Rn {: CHECKRALIGN32( R0 + sh4r.r[Rm] );
   383     MEM_READ_LONG( R0 + sh4r.r[Rm], sh4r.r[Rn] );
   384 :}
   385 MOV.L Rm, @(disp, Rn) {:
   386     tmp = sh4r.r[Rn] + disp;
   387     CHECKWALIGN32( tmp );
   388     MEM_WRITE_LONG( tmp, sh4r.r[Rm] );
   389 :}
   390 MOV.B Rm, @Rn {: MEM_WRITE_BYTE( sh4r.r[Rn], sh4r.r[Rm] ); :}
   391 MOV.W Rm, @Rn {: CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn], sh4r.r[Rm] ); :}
   392 MOV.L Rm, @Rn {: CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn], sh4r.r[Rm] ); :}
   393  MOV.B Rm, @-Rn {: MEM_WRITE_BYTE( sh4r.r[Rn]-1, sh4r.r[Rm] ); sh4r.r[Rn]--; :}
   394  MOV.W Rm, @-Rn {: CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn]-2, sh4r.r[Rm] ); sh4r.r[Rn] -= 2; :}
   395  MOV.L Rm, @-Rn {: CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.r[Rm] ); sh4r.r[Rn] -= 4; :}
   396 MOV.L @(disp, Rm), Rn {:
   397     tmp = sh4r.r[Rm] + disp;
   398     CHECKRALIGN32( tmp );
   399     MEM_READ_LONG( tmp, sh4r.r[Rn] );
   400 :}
   401 MOV.B @Rm, Rn {: MEM_READ_BYTE( sh4r.r[Rm], sh4r.r[Rn] ); :}
   402  MOV.W @Rm, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); MEM_READ_WORD( sh4r.r[Rm], sh4r.r[Rn] ); :}
   403  MOV.L @Rm, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); MEM_READ_LONG( sh4r.r[Rm], sh4r.r[Rn] ); :}
   404 MOV Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]; :}
   405  MOV.B @Rm+, Rn {: MEM_READ_BYTE( sh4r.r[Rm], sh4r.r[Rn] ); sh4r.r[Rm] ++; :}
   406  MOV.W @Rm+, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); MEM_READ_WORD( sh4r.r[Rm], sh4r.r[Rn] ); sh4r.r[Rm] += 2; :}
   407  MOV.L @Rm+, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); MEM_READ_LONG( sh4r.r[Rm], sh4r.r[Rn] ); sh4r.r[Rm] += 4; :}
   408 MOV.L @(disp, PC), Rn {:
   409     CHECKSLOTILLEGAL();
   410     tmp = (pc&0xFFFFFFFC) + disp + 4;
   411     MEM_READ_LONG( tmp, sh4r.r[Rn] );
   412 :}
   413 MOV.B R0, @(disp, GBR) {: MEM_WRITE_BYTE( sh4r.gbr + disp, R0 ); :}
   414 MOV.W R0, @(disp, GBR) {:
   415     tmp = sh4r.gbr + disp;
   416     CHECKWALIGN16( tmp );
   417     MEM_WRITE_WORD( tmp, R0 );
   418 :}
   419 MOV.L R0, @(disp, GBR) {:
   420     tmp = sh4r.gbr + disp;
   421     CHECKWALIGN32( tmp );
   422     MEM_WRITE_LONG( tmp, R0 );
   423 :}
   424  MOV.B @(disp, GBR), R0 {: MEM_READ_BYTE( sh4r.gbr + disp, R0 ); :}
   425 MOV.W @(disp, GBR), R0 {: 
   426     tmp = sh4r.gbr + disp;
   427     CHECKRALIGN16( tmp );
   428     MEM_READ_WORD( tmp, R0 );
   429 :}
   430 MOV.L @(disp, GBR), R0 {:
   431     tmp = sh4r.gbr + disp;
   432     CHECKRALIGN32( tmp );
   433     MEM_READ_LONG( tmp, R0 );
   434 :}
   435 MOV.B R0, @(disp, Rn) {: MEM_WRITE_BYTE( sh4r.r[Rn] + disp, R0 ); :}
   436 MOV.W R0, @(disp, Rn) {: 
   437     tmp = sh4r.r[Rn] + disp;
   438     CHECKWALIGN16( tmp );
   439     MEM_WRITE_WORD( tmp, R0 );
   440 :}
   441  MOV.B @(disp, Rm), R0 {: MEM_READ_BYTE( sh4r.r[Rm] + disp, R0 ); :}
   442 MOV.W @(disp, Rm), R0 {: 
   443     tmp = sh4r.r[Rm] + disp;
   444     CHECKRALIGN16( tmp );
   445     MEM_READ_WORD( tmp, R0 );
   446 :}
   447 MOV.W @(disp, PC), Rn {:
   448     CHECKSLOTILLEGAL();
   449     tmp = pc + 4 + disp;
   450     MEM_READ_WORD( tmp, sh4r.r[Rn] );
   451 :}
   452 MOVA @(disp, PC), R0 {:
   453     CHECKSLOTILLEGAL();
   454     R0 = (pc&0xFFFFFFFC) + disp + 4;
   455 :}
   456 MOV #imm, Rn {:  sh4r.r[Rn] = imm; :}
   458 FMOV @(R0, Rm), FRn {: MEM_FP_READ( sh4r.r[Rm] + R0, FRn ); :}
   459 FMOV FRm, @(R0, Rn) {: MEM_FP_WRITE( sh4r.r[Rn] + R0, FRm ); :}
   460 FMOV @Rm, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); :}
   461 FMOV @Rm+, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); sh4r.r[Rm] += FP_WIDTH; :}
   462 FMOV FRm, @Rn {: MEM_FP_WRITE( sh4r.r[Rn], FRm ); :}
   463  FMOV FRm, @-Rn {: MEM_FP_WRITE( sh4r.r[Rn] - FP_WIDTH, FRm ); sh4r.r[Rn] -= FP_WIDTH; :}
   464 FMOV FRm, FRn {: 
   465     if( IS_FPU_DOUBLESIZE() )
   466 	DR(FRn) = DR(FRm);
   467     else
   468 	FR(FRn) = FR(FRm);
   469 :}
   471 CMP/EQ #imm, R0 {: sh4r.t = ( R0 == imm ? 1 : 0 ); :}
   472 CMP/EQ Rm, Rn {: sh4r.t = ( sh4r.r[Rm] == sh4r.r[Rn] ? 1 : 0 ); :}
   473 CMP/GE Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   474 CMP/GT Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   475 CMP/HI Rm, Rn {: sh4r.t = ( sh4r.r[Rn] > sh4r.r[Rm] ? 1 : 0 ); :}
   476 CMP/HS Rm, Rn {: sh4r.t = ( sh4r.r[Rn] >= sh4r.r[Rm] ? 1 : 0 ); :}
   477 CMP/PL Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > 0 ? 1 : 0 ); :}
   478 CMP/PZ Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= 0 ? 1 : 0 ); :}
   479 CMP/STR Rm, Rn {: 
   480     /* set T = 1 if any byte in RM & RN is the same */
   481     tmp = sh4r.r[Rm] ^ sh4r.r[Rn];
   482     sh4r.t = ((tmp&0x000000FF)==0 || (tmp&0x0000FF00)==0 ||
   483              (tmp&0x00FF0000)==0 || (tmp&0xFF000000)==0)?1:0;
   484 :}
   486 ADD Rm, Rn {: sh4r.r[Rn] += sh4r.r[Rm]; :}
   487 ADD #imm, Rn {: sh4r.r[Rn] += imm; :}
   488 ADDC Rm, Rn {:
   489     tmp = sh4r.r[Rn];
   490     sh4r.r[Rn] += sh4r.r[Rm] + sh4r.t;
   491     sh4r.t = ( sh4r.r[Rn] < tmp || (sh4r.r[Rn] == tmp && sh4r.t != 0) ? 1 : 0 );
   492 :}
   493 ADDV Rm, Rn {:
   494     tmp = sh4r.r[Rn] + sh4r.r[Rm];
   495     sh4r.t = ( (sh4r.r[Rn]>>31) == (sh4r.r[Rm]>>31) && ((sh4r.r[Rn]>>31) != (tmp>>31)) );
   496     sh4r.r[Rn] = tmp;
   497 :}
   498 DIV0U {: sh4r.m = sh4r.q = sh4r.t = 0; :}
   499 DIV0S Rm, Rn {: 
   500     sh4r.q = sh4r.r[Rn]>>31;
   501     sh4r.m = sh4r.r[Rm]>>31;
   502     sh4r.t = sh4r.q ^ sh4r.m;
   503 :}
   504 DIV1 Rm, Rn {:
   505     /* This is derived from the sh4 manual with some simplifications */
   506     uint32_t tmp0, tmp1, tmp2, dir;
   508     dir = sh4r.q ^ sh4r.m;
   509     sh4r.q = (sh4r.r[Rn] >> 31);
   510     tmp2 = sh4r.r[Rm];
   511     sh4r.r[Rn] = (sh4r.r[Rn] << 1) | sh4r.t;
   512     tmp0 = sh4r.r[Rn];
   513     if( dir ) {
   514          sh4r.r[Rn] += tmp2;
   515          tmp1 = (sh4r.r[Rn]<tmp0 ? 1 : 0 );
   516     } else {
   517          sh4r.r[Rn] -= tmp2;
   518          tmp1 = (sh4r.r[Rn]>tmp0 ? 1 : 0 );
   519     }
   520     sh4r.q ^= sh4r.m ^ tmp1;
   521     sh4r.t = ( sh4r.q == sh4r.m ? 1 : 0 );
   522 :}
   523 DMULS.L Rm, Rn {: sh4r.mac = SIGNEXT32(sh4r.r[Rm]) * SIGNEXT32(sh4r.r[Rn]); :}
   524 DMULU.L Rm, Rn {: sh4r.mac = ((uint64_t)sh4r.r[Rm]) * ((uint64_t)sh4r.r[Rn]); :}
   525 DT Rn {:
   526     sh4r.r[Rn] --;
   527     sh4r.t = ( sh4r.r[Rn] == 0 ? 1 : 0 );
   528 :}
   529 MAC.W @Rm+, @Rn+ {:
   530     int32_t stmp;
   531     if( Rm == Rn ) {
   532 	CHECKRALIGN16(sh4r.r[Rn]);
   533 	MEM_READ_WORD( sh4r.r[Rn], tmp );
   534 	stmp = SIGNEXT16(tmp);
   535 	MEM_READ_WORD( sh4r.r[Rn]+2, tmp );
   536 	stmp *= SIGNEXT16(tmp);
   537 	sh4r.r[Rn] += 4;
   538     } else {
   539 	CHECKRALIGN16( sh4r.r[Rn] );
   540 	CHECKRALIGN16( sh4r.r[Rm] );
   541 	MEM_READ_WORD(sh4r.r[Rn], tmp);
   542 	stmp = SIGNEXT16(tmp);
   543 	MEM_READ_WORD(sh4r.r[Rm], tmp);
   544 	stmp = stmp * SIGNEXT16(tmp);
   545 	sh4r.r[Rn] += 2;
   546 	sh4r.r[Rm] += 2;
   547     }
   548     if( sh4r.s ) {
   549 	int64_t tmpl = (int64_t)((int32_t)sh4r.mac) + (int64_t)stmp;
   550 	if( tmpl > (int64_t)0x000000007FFFFFFFLL ) {
   551 	    sh4r.mac = 0x000000017FFFFFFFLL;
   552 	} else if( tmpl < (int64_t)0xFFFFFFFF80000000LL ) {
   553 	    sh4r.mac = 0x0000000180000000LL;
   554 	} else {
   555 	    sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   556 		((uint32_t)(sh4r.mac + stmp));
   557 	}
   558     } else {
   559 	sh4r.mac += SIGNEXT32(stmp);
   560     }
   561 :}
   562 MAC.L @Rm+, @Rn+ {:
   563     int64_t tmpl;
   564     if( Rm == Rn ) {
   565 	CHECKRALIGN32( sh4r.r[Rn] );
   566 	MEM_READ_LONG(sh4r.r[Rn], tmp);
   567 	tmpl = SIGNEXT32(tmp);
   568 	MEM_READ_LONG(sh4r.r[Rn]+4, tmp);
   569 	tmpl = tmpl * SIGNEXT32(tmp) + sh4r.mac;
   570 	sh4r.r[Rn] += 8;
   571     } else {
   572 	CHECKRALIGN32( sh4r.r[Rm] );
   573 	CHECKRALIGN32( sh4r.r[Rn] );
   574 	MEM_READ_LONG(sh4r.r[Rn], tmp);
   575 	tmpl = SIGNEXT32(tmp);
   576 	MEM_READ_LONG(sh4r.r[Rm], tmp);
   577 	tmpl = tmpl * SIGNEXT32(tmp) + sh4r.mac;
   578 	sh4r.r[Rn] += 4;
   579 	sh4r.r[Rm] += 4;
   580     }
   581     if( sh4r.s ) {
   582         /* 48-bit Saturation. Yuch */
   583         if( tmpl < (int64_t)0xFFFF800000000000LL )
   584             tmpl = 0xFFFF800000000000LL;
   585         else if( tmpl > (int64_t)0x00007FFFFFFFFFFFLL )
   586             tmpl = 0x00007FFFFFFFFFFFLL;
   587     }
   588     sh4r.mac = tmpl;
   589 :}
   590 MUL.L Rm, Rn {: sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   591                         (sh4r.r[Rm] * sh4r.r[Rn]); :}
   592 MULU.W Rm, Rn {:
   593     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   594                (uint32_t)((sh4r.r[Rm]&0xFFFF) * (sh4r.r[Rn]&0xFFFF));
   595 :}
   596 MULS.W Rm, Rn {:
   597     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   598                (uint32_t)(SIGNEXT32(sh4r.r[Rm]&0xFFFF) * SIGNEXT32(sh4r.r[Rn]&0xFFFF));
   599 :}
   600 NEGC Rm, Rn {:
   601     tmp = 0 - sh4r.r[Rm];
   602     sh4r.r[Rn] = tmp - sh4r.t;
   603     sh4r.t = ( 0<tmp || tmp<sh4r.r[Rn] ? 1 : 0 );
   604 :}
   605 NEG Rm, Rn {: sh4r.r[Rn] = 0 - sh4r.r[Rm]; :}
   606 SUB Rm, Rn {: sh4r.r[Rn] -= sh4r.r[Rm]; :}
   607 SUBC Rm, Rn {: 
   608     tmp = sh4r.r[Rn];
   609     sh4r.r[Rn] = sh4r.r[Rn] - sh4r.r[Rm] - sh4r.t;
   610     sh4r.t = (sh4r.r[Rn] > tmp || (sh4r.r[Rn] == tmp && sh4r.t == 1));
   611 :}
   613 BRAF Rn {:
   614      CHECKSLOTILLEGAL();
   615      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   616      sh4r.in_delay_slot = 1;
   617      sh4r.pc = sh4r.new_pc;
   618      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   619      return TRUE;
   620 :}
   621 BSRF Rn {:
   622      CHECKSLOTILLEGAL();
   623      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   624      sh4r.in_delay_slot = 1;
   625      sh4r.pr = sh4r.pc + 4;
   626      sh4r.pc = sh4r.new_pc;
   627      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   628      TRACE_CALL( pc, sh4r.new_pc );
   629      return TRUE;
   630 :}
   631 BT disp {:
   632     CHECKSLOTILLEGAL();
   633     if( sh4r.t ) {
   634         CHECKDEST( sh4r.pc + disp + 4 )
   635         sh4r.pc += disp + 4;
   636         sh4r.new_pc = sh4r.pc + 2;
   637         return TRUE;
   638     }
   639 :}
   640 BF disp {:
   641     CHECKSLOTILLEGAL();
   642     if( !sh4r.t ) {
   643         CHECKDEST( sh4r.pc + disp + 4 )
   644         sh4r.pc += disp + 4;
   645         sh4r.new_pc = sh4r.pc + 2;
   646         return TRUE;
   647     }
   648 :}
   649 BT/S disp {:
   650     CHECKSLOTILLEGAL();
   651     if( sh4r.t ) {
   652         CHECKDEST( sh4r.pc + disp + 4 )
   653         sh4r.in_delay_slot = 1;
   654         sh4r.pc = sh4r.new_pc;
   655         sh4r.new_pc = pc + disp + 4;
   656         sh4r.in_delay_slot = 1;
   657         return TRUE;
   658     }
   659 :}
   660 BF/S disp {:
   661     CHECKSLOTILLEGAL();
   662     if( !sh4r.t ) {
   663         CHECKDEST( sh4r.pc + disp + 4 )
   664         sh4r.in_delay_slot = 1;
   665         sh4r.pc = sh4r.new_pc;
   666         sh4r.new_pc = pc + disp + 4;
   667         return TRUE;
   668     }
   669 :}
   670 BRA disp {:
   671     CHECKSLOTILLEGAL();
   672     CHECKDEST( sh4r.pc + disp + 4 );
   673     sh4r.in_delay_slot = 1;
   674     sh4r.pc = sh4r.new_pc;
   675     sh4r.new_pc = pc + 4 + disp;
   676     return TRUE;
   677 :}
   678 BSR disp {:
   679     CHECKDEST( sh4r.pc + disp + 4 );
   680     CHECKSLOTILLEGAL();
   681     sh4r.in_delay_slot = 1;
   682     sh4r.pr = pc + 4;
   683     sh4r.pc = sh4r.new_pc;
   684     sh4r.new_pc = pc + 4 + disp;
   685     TRACE_CALL( pc, sh4r.new_pc );
   686     return TRUE;
   687 :}
   688 TRAPA #imm {:
   689     CHECKSLOTILLEGAL();
   690     sh4r.pc += 2;
   691     sh4_raise_trap( imm );
   692     return TRUE;
   693 :}
   694 RTS {: 
   695     CHECKSLOTILLEGAL();
   696     CHECKDEST( sh4r.pr );
   697     sh4r.in_delay_slot = 1;
   698     sh4r.pc = sh4r.new_pc;
   699     sh4r.new_pc = sh4r.pr;
   700     TRACE_RETURN( pc, sh4r.new_pc );
   701     return TRUE;
   702 :}
   703 SLEEP {:
   704     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   705 	sh4r.sh4_state = SH4_STATE_STANDBY;
   706     } else {
   707 	sh4r.sh4_state = SH4_STATE_SLEEP;
   708     }
   709     return FALSE; /* Halt CPU */
   710 :}
   711 RTE {:
   712     CHECKPRIV();
   713     CHECKDEST( sh4r.spc );
   714     CHECKSLOTILLEGAL();
   715     sh4r.in_delay_slot = 1;
   716     sh4r.pc = sh4r.new_pc;
   717     sh4r.new_pc = sh4r.spc;
   718     sh4_write_sr( sh4r.ssr );
   719     return TRUE;
   720 :}
   721 JMP @Rn {:
   722     CHECKDEST( sh4r.r[Rn] );
   723     CHECKSLOTILLEGAL();
   724     sh4r.in_delay_slot = 1;
   725     sh4r.pc = sh4r.new_pc;
   726     sh4r.new_pc = sh4r.r[Rn];
   727     return TRUE;
   728 :}
   729 JSR @Rn {:
   730     CHECKDEST( sh4r.r[Rn] );
   731     CHECKSLOTILLEGAL();
   732     sh4r.in_delay_slot = 1;
   733     sh4r.pc = sh4r.new_pc;
   734     sh4r.new_pc = sh4r.r[Rn];
   735     sh4r.pr = pc + 4;
   736     TRACE_CALL( pc, sh4r.new_pc );
   737     return TRUE;
   738 :}
   739 STS MACH, Rn {: sh4r.r[Rn] = (sh4r.mac>>32); :}
   740 STS.L MACH, @-Rn {:
   741     CHECKWALIGN32( sh4r.r[Rn] );
   742     MEM_WRITE_LONG( sh4r.r[Rn]-4, (sh4r.mac>>32) );
   743     sh4r.r[Rn] -= 4;
   744 :}
   745 STC.L SR, @-Rn {:
   746     CHECKPRIV();
   747     CHECKWALIGN32( sh4r.r[Rn] );
   748     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4_read_sr() );
   749     sh4r.r[Rn] -= 4;
   750 :}
   751 LDS.L @Rm+, MACH {:
   752     CHECKRALIGN32( sh4r.r[Rm] );
   753     MEM_READ_LONG(sh4r.r[Rm], tmp);
   754     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   755 	(((uint64_t)tmp)<<32);
   756     sh4r.r[Rm] += 4;
   757 :}
   758 LDC.L @Rm+, SR {:
   759     CHECKSLOTILLEGAL();
   760     CHECKPRIV();
   761     CHECKWALIGN32( sh4r.r[Rm] );
   762     MEM_READ_LONG(sh4r.r[Rm], tmp);
   763     sh4_write_sr( tmp );
   764     sh4r.r[Rm] +=4;
   765 :}
   766 LDS Rm, MACH {:
   767     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   768                (((uint64_t)sh4r.r[Rm])<<32);
   769 :}
   770 LDC Rm, SR {:
   771     CHECKSLOTILLEGAL();
   772     CHECKPRIV();
   773     sh4_write_sr( sh4r.r[Rm] );
   774 :}
   775 LDC Rm, SGR {:
   776     CHECKPRIV();
   777     sh4r.sgr = sh4r.r[Rm];
   778 :}
   779 LDC.L @Rm+, SGR {:
   780     CHECKPRIV();
   781     CHECKRALIGN32( sh4r.r[Rm] );
   782     MEM_READ_LONG(sh4r.r[Rm], sh4r.sgr);
   783     sh4r.r[Rm] +=4;
   784 :}
   785 STS MACL, Rn {: sh4r.r[Rn] = (uint32_t)sh4r.mac; :}
   786 STS.L MACL, @-Rn {:
   787     CHECKWALIGN32( sh4r.r[Rn] );
   788     MEM_WRITE_LONG( sh4r.r[Rn]-4, (uint32_t)sh4r.mac );
   789     sh4r.r[Rn] -= 4;
   790 :}
   791 STC.L GBR, @-Rn {:
   792     CHECKWALIGN32( sh4r.r[Rn] );
   793     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.gbr );
   794     sh4r.r[Rn] -= 4;
   795 :}
   796 LDS.L @Rm+, MACL {:
   797     CHECKRALIGN32( sh4r.r[Rm] );
   798     MEM_READ_LONG(sh4r.r[Rm], tmp);
   799     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   800                (uint64_t)((uint32_t)tmp);
   801     sh4r.r[Rm] += 4;
   802 :}
   803 LDC.L @Rm+, GBR {:
   804     CHECKRALIGN32( sh4r.r[Rm] );
   805     MEM_READ_LONG(sh4r.r[Rm], sh4r.gbr);
   806     sh4r.r[Rm] +=4;
   807 :}
   808 LDS Rm, MACL {:
   809     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   810                (uint64_t)((uint32_t)(sh4r.r[Rm]));
   811 :}
   812 LDC Rm, GBR {: sh4r.gbr = sh4r.r[Rm]; :}
   813 STS PR, Rn {: sh4r.r[Rn] = sh4r.pr; :}
   814 STS.L PR, @-Rn {:
   815     CHECKWALIGN32( sh4r.r[Rn] );
   816     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.pr );
   817     sh4r.r[Rn] -= 4;
   818 :}
   819 STC.L VBR, @-Rn {:
   820     CHECKPRIV();
   821     CHECKWALIGN32( sh4r.r[Rn] );
   822     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.vbr );
   823     sh4r.r[Rn] -= 4;
   824 :}
   825 LDS.L @Rm+, PR {:
   826     CHECKRALIGN32( sh4r.r[Rm] );
   827     MEM_READ_LONG( sh4r.r[Rm], sh4r.pr );
   828     sh4r.r[Rm] += 4;
   829 :}
   830 LDC.L @Rm+, VBR {:
   831     CHECKPRIV();
   832     CHECKRALIGN32( sh4r.r[Rm] );
   833     MEM_READ_LONG(sh4r.r[Rm], sh4r.vbr);
   834     sh4r.r[Rm] +=4;
   835 :}
   836 LDS Rm, PR {: sh4r.pr = sh4r.r[Rm]; :}
   837 LDC Rm, VBR {:
   838     CHECKPRIV();
   839     sh4r.vbr = sh4r.r[Rm];
   840 :}
   841 STC SGR, Rn {:
   842     CHECKPRIV();
   843     sh4r.r[Rn] = sh4r.sgr;
   844 :}
   845 STC.L SGR, @-Rn {:
   846     CHECKPRIV();
   847     CHECKWALIGN32( sh4r.r[Rn] );
   848     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.sgr );
   849     sh4r.r[Rn] -= 4;
   850 :}
   851 STC.L SSR, @-Rn {:
   852     CHECKPRIV();
   853     CHECKWALIGN32( sh4r.r[Rn] );
   854     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.ssr );
   855     sh4r.r[Rn] -= 4;
   856 :}
   857 LDC.L @Rm+, SSR {:
   858     CHECKPRIV();
   859     CHECKRALIGN32( sh4r.r[Rm] );
   860     MEM_READ_LONG(sh4r.r[Rm], sh4r.ssr);
   861     sh4r.r[Rm] +=4;
   862 :}
   863 LDC Rm, SSR {:
   864     CHECKPRIV();
   865     sh4r.ssr = sh4r.r[Rm];
   866 :}
   867 STC.L SPC, @-Rn {:
   868     CHECKPRIV();
   869     CHECKWALIGN32( sh4r.r[Rn] );
   870     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.spc );
   871     sh4r.r[Rn] -= 4;
   872 :}
   873 LDC.L @Rm+, SPC {:
   874     CHECKPRIV();
   875     CHECKRALIGN32( sh4r.r[Rm] );
   876     MEM_READ_LONG(sh4r.r[Rm], sh4r.spc);
   877     sh4r.r[Rm] +=4;
   878 :}
   879 LDC Rm, SPC {:
   880     CHECKPRIV();
   881     sh4r.spc = sh4r.r[Rm];
   882 :}
   883 STS FPUL, Rn {: 
   884     CHECKFPUEN();
   885     sh4r.r[Rn] = FPULi; 
   886 :}
   887 STS.L FPUL, @-Rn {:
   888     CHECKFPUEN();
   889     CHECKWALIGN32( sh4r.r[Rn] );
   890     MEM_WRITE_LONG( sh4r.r[Rn]-4, FPULi );
   891     sh4r.r[Rn] -= 4;
   892 :}
   893 LDS.L @Rm+, FPUL {:
   894     CHECKFPUEN();
   895     CHECKRALIGN32( sh4r.r[Rm] );
   896     MEM_READ_LONG(sh4r.r[Rm], FPULi);
   897     sh4r.r[Rm] +=4;
   898 :}
   899 LDS Rm, FPUL {:
   900     CHECKFPUEN();
   901     FPULi = sh4r.r[Rm]; 
   902 :}
   903 STS FPSCR, Rn {: 
   904     CHECKFPUEN();
   905     sh4r.r[Rn] = sh4r.fpscr; 
   906 :}
   907 STS.L FPSCR, @-Rn {:
   908     CHECKFPUEN();
   909     CHECKWALIGN32( sh4r.r[Rn] );
   910     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.fpscr );
   911     sh4r.r[Rn] -= 4;
   912 :}
   913 LDS.L @Rm+, FPSCR {:
   914     CHECKFPUEN();
   915     CHECKRALIGN32( sh4r.r[Rm] );
   916     MEM_READ_LONG(sh4r.r[Rm], tmp);
   917     sh4r.r[Rm] +=4;
   918     sh4_write_fpscr( tmp );
   919 :}
   920 LDS Rm, FPSCR {: 
   921     CHECKFPUEN();
   922     sh4_write_fpscr( sh4r.r[Rm] );
   923 :}
   924 STC DBR, Rn {: CHECKPRIV(); sh4r.r[Rn] = sh4r.dbr; :}
   925 STC.L DBR, @-Rn {:
   926     CHECKPRIV();
   927     CHECKWALIGN32( sh4r.r[Rn] );
   928     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.dbr );
   929     sh4r.r[Rn] -= 4;
   930 :}
   931 LDC.L @Rm+, DBR {:
   932     CHECKPRIV();
   933     CHECKRALIGN32( sh4r.r[Rm] );
   934     MEM_READ_LONG(sh4r.r[Rm], sh4r.dbr);
   935     sh4r.r[Rm] +=4;
   936 :}
   937 LDC Rm, DBR {:
   938     CHECKPRIV();
   939     sh4r.dbr = sh4r.r[Rm];
   940 :}
   941 STC.L Rm_BANK, @-Rn {:
   942     CHECKPRIV();
   943     CHECKWALIGN32( sh4r.r[Rn] );
   944     MEM_WRITE_LONG( sh4r.r[Rn]-4, sh4r.r_bank[Rm_BANK] );
   945     sh4r.r[Rn] -= 4;
   946 :}
   947 LDC.L @Rm+, Rn_BANK {:
   948     CHECKPRIV();
   949     CHECKRALIGN32( sh4r.r[Rm] );
   950     MEM_READ_LONG( sh4r.r[Rm], sh4r.r_bank[Rn_BANK] );
   951     sh4r.r[Rm] += 4;
   952 :}
   953 LDC Rm, Rn_BANK {:
   954     CHECKPRIV();
   955     sh4r.r_bank[Rn_BANK] = sh4r.r[Rm];
   956 :}
   957 STC SR, Rn {: 
   958     CHECKPRIV();
   959     sh4r.r[Rn] = sh4_read_sr();
   960 :}
   961 STC GBR, Rn {:
   962     sh4r.r[Rn] = sh4r.gbr;
   963 :}
   964 STC VBR, Rn {:
   965     CHECKPRIV();
   966     sh4r.r[Rn] = sh4r.vbr;
   967 :}
   968 STC SSR, Rn {:
   969     CHECKPRIV();
   970     sh4r.r[Rn] = sh4r.ssr;
   971 :}
   972 STC SPC, Rn {:
   973     CHECKPRIV();
   974     sh4r.r[Rn] = sh4r.spc;
   975 :}
   976 STC Rm_BANK, Rn {:
   977     CHECKPRIV();
   978     sh4r.r[Rn] = sh4r.r_bank[Rm_BANK];
   979 :}
   981 FADD FRm, FRn {:
   982     CHECKFPUEN();
   983     if( IS_FPU_DOUBLEPREC() ) {
   984 	DR(FRn) += DR(FRm);
   985     } else {
   986 	FR(FRn) += FR(FRm);
   987     }
   988 :}
   989 FSUB FRm, FRn {:
   990     CHECKFPUEN();
   991     if( IS_FPU_DOUBLEPREC() ) {
   992 	DR(FRn) -= DR(FRm);
   993     } else {
   994 	FR(FRn) -= FR(FRm);
   995     }
   996 :}
   998 FMUL FRm, FRn {:
   999     CHECKFPUEN();
  1000     if( IS_FPU_DOUBLEPREC() ) {
  1001 	DR(FRn) *= DR(FRm);
  1002     } else {
  1003 	FR(FRn) *= FR(FRm);
  1005 :}
  1007 FDIV FRm, FRn {:
  1008     CHECKFPUEN();
  1009     if( IS_FPU_DOUBLEPREC() ) {
  1010 	DR(FRn) /= DR(FRm);
  1011     } else {
  1012 	FR(FRn) /= FR(FRm);
  1014 :}
  1016 FCMP/EQ FRm, FRn {:
  1017     CHECKFPUEN();
  1018     if( IS_FPU_DOUBLEPREC() ) {
  1019 	sh4r.t = ( DR(FRn) == DR(FRm) ? 1 : 0 );
  1020     } else {
  1021 	sh4r.t = ( FR(FRn) == FR(FRm) ? 1 : 0 );
  1023 :}
  1025 FCMP/GT FRm, FRn {:
  1026     CHECKFPUEN();
  1027     if( IS_FPU_DOUBLEPREC() ) {
  1028 	sh4r.t = ( DR(FRn) > DR(FRm) ? 1 : 0 );
  1029     } else {
  1030 	sh4r.t = ( FR(FRn) > FR(FRm) ? 1 : 0 );
  1032 :}
  1034 FSTS FPUL, FRn {: CHECKFPUEN(); FR(FRn) = FPULf; :}
  1035 FLDS FRm, FPUL {: CHECKFPUEN(); FPULf = FR(FRm); :}
  1036 FLOAT FPUL, FRn {: 
  1037     CHECKFPUEN();
  1038     if( IS_FPU_DOUBLEPREC() ) {
  1039 	if( FRn&1 ) { // No, really...
  1040 	    dtmp = (double)FPULi;
  1041 	    FR(FRn) = *(((float *)&dtmp)+1);
  1042 	} else {
  1043 	    DRF(FRn>>1) = (double)FPULi;
  1045     } else {
  1046 	FR(FRn) = (float)FPULi;
  1048 :}
  1049 FTRC FRm, FPUL {:
  1050     CHECKFPUEN();
  1051     if( IS_FPU_DOUBLEPREC() ) {
  1052 	if( FRm&1 ) {
  1053 	    dtmp = 0;
  1054 	    *(((float *)&dtmp)+1) = FR(FRm);
  1055 	} else {
  1056 	    dtmp = DRF(FRm>>1);
  1058         if( dtmp >= MAX_INTF )
  1059             FPULi = MAX_INT;
  1060         else if( dtmp <= MIN_INTF )
  1061             FPULi = MIN_INT;
  1062         else 
  1063             FPULi = (int32_t)dtmp;
  1064     } else {
  1065 	ftmp = FR(FRm);
  1066 	if( ftmp >= MAX_INTF )
  1067 	    FPULi = MAX_INT;
  1068 	else if( ftmp <= MIN_INTF )
  1069 	    FPULi = MIN_INT;
  1070 	else
  1071 	    FPULi = (int32_t)ftmp;
  1073 :}
  1074 FNEG FRn {:
  1075     CHECKFPUEN();
  1076     if( IS_FPU_DOUBLEPREC() ) {
  1077 	DR(FRn) = -DR(FRn);
  1078     } else {
  1079         FR(FRn) = -FR(FRn);
  1081 :}
  1082 FABS FRn {:
  1083     CHECKFPUEN();
  1084     if( IS_FPU_DOUBLEPREC() ) {
  1085 	DR(FRn) = fabs(DR(FRn));
  1086     } else {
  1087         FR(FRn) = fabsf(FR(FRn));
  1089 :}
  1090 FSQRT FRn {:
  1091     CHECKFPUEN();
  1092     if( IS_FPU_DOUBLEPREC() ) {
  1093 	DR(FRn) = sqrt(DR(FRn));
  1094     } else {
  1095         FR(FRn) = sqrtf(FR(FRn));
  1097 :}
  1098 FLDI0 FRn {:
  1099     CHECKFPUEN();
  1100     if( IS_FPU_DOUBLEPREC() ) {
  1101 	DR(FRn) = 0.0;
  1102     } else {
  1103         FR(FRn) = 0.0;
  1105 :}
  1106 FLDI1 FRn {:
  1107     CHECKFPUEN();
  1108     if( IS_FPU_DOUBLEPREC() ) {
  1109 	DR(FRn) = 1.0;
  1110     } else {
  1111         FR(FRn) = 1.0;
  1113 :}
  1114 FMAC FR0, FRm, FRn {:
  1115     CHECKFPUEN();
  1116     if( IS_FPU_DOUBLEPREC() ) {
  1117         DR(FRn) += DR(FRm)*DR(0);
  1118     } else {
  1119 	FR(FRn) += FR(FRm)*FR(0);
  1121 :}
  1122 FRCHG {: 
  1123     CHECKFPUEN(); 
  1124     sh4r.fpscr ^= FPSCR_FR; 
  1125     sh4_switch_fr_banks();
  1126 :}
  1127 FSCHG {: CHECKFPUEN(); sh4r.fpscr ^= FPSCR_SZ; :}
  1128 FCNVSD FPUL, FRn {:
  1129     CHECKFPUEN();
  1130     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1131 	DR(FRn) = (double)FPULf;
  1133 :}
  1134 FCNVDS FRm, FPUL {:
  1135     CHECKFPUEN();
  1136     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1137 	FPULf = (float)DR(FRm);
  1139 :}
  1141 FSRRA FRn {:
  1142     CHECKFPUEN();
  1143     if( !IS_FPU_DOUBLEPREC() ) {
  1144 	FR(FRn) = 1.0/sqrtf(FR(FRn));
  1146 :}
  1147 FIPR FVm, FVn {:
  1148     CHECKFPUEN();
  1149     if( !IS_FPU_DOUBLEPREC() ) {
  1150         int tmp2 = FVn<<2;
  1151         tmp = FVm<<2;
  1152         FR(tmp2+3) = FR(tmp)*FR(tmp2) +
  1153             FR(tmp+1)*FR(tmp2+1) +
  1154             FR(tmp+2)*FR(tmp2+2) +
  1155             FR(tmp+3)*FR(tmp2+3);
  1157 :}
  1158 FSCA FPUL, FRn {:
  1159     CHECKFPUEN();
  1160     if( !IS_FPU_DOUBLEPREC() ) {
  1161 	sh4_fsca( FPULi, (float *)&(DRF(FRn>>1)) );
  1162 	/*
  1163         float angle = (((float)(FPULi&0xFFFF))/65536.0) * 2 * M_PI;
  1164         FR(FRn) = sinf(angle);
  1165         FR((FRn)+1) = cosf(angle);
  1166 	*/
  1168 :}
  1169 FTRV XMTRX, FVn {:
  1170     CHECKFPUEN();
  1171     if( !IS_FPU_DOUBLEPREC() ) {
  1172 	sh4_ftrv((float *)&(DRF(FVn<<1)) );
  1174 :}
  1175 UNDEF {:
  1176     UNDEF(ir);
  1177 :}
  1178 %%
  1179     sh4r.pc = sh4r.new_pc;
  1180     sh4r.new_pc += 2;
  1181     sh4r.in_delay_slot = 0;
  1182     return TRUE;
.