Search
lxdream.org :: lxdream/src/asic.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/asic.c
changeset 1269:50c63f63bf8f
prev1237:377077d10d62
author nkeynes
date Thu Mar 15 08:26:06 2012 +1000 (12 years ago)
permissions -rw-r--r--
last change GDB: Support ^C interruption from GDB
- postpone dreamcast_run() until after the IO callback returns (callback
won't be called again until the callback returns, so blocks all input)
- generate stop notifications when the DC stops, regardless of where the
stop originates.
view annotate diff log raw
     1 /**
     2  * $Id$
     3  *
     4  * Support for the miscellaneous ASIC functions (Primarily event multiplexing,
     5  * and DMA). 
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE asic_module
    22 #include <assert.h>
    23 #include <stdlib.h>
    24 #include "eventq.h"
    25 #include "dream.h"
    26 #include "mem.h"
    27 #include "sh4/intc.h"
    28 #include "sh4/dmac.h"
    29 #include "sh4/sh4.h"
    30 #include "dreamcast.h"
    31 #include "maple/maple.h"
    32 #include "gdrom/ide.h"
    33 #include "pvr2/pvr2.h"
    34 #include "asic.h"
    35 #define MMIO_IMPL
    36 #include "asic.h"
    37 /*
    38  * Open questions:
    39  *   1) Does changing the mask after event occurance result in the
    40  *      interrupt being delivered immediately?
    41  * TODO: Logic diagram of ASIC event/interrupt logic.
    42  *
    43  * ... don't even get me started on the "EXTDMA" page, about which, apparently,
    44  * practically nothing is publicly known...
    45  */
    47 static void asic_check_cleared_events( void );
    48 static void asic_init( void );
    49 static void asic_reset( void );
    50 static uint32_t asic_run_slice( uint32_t nanosecs );
    51 static void asic_save_state( FILE *f );
    52 static int asic_load_state( FILE *f );
    53 static uint32_t g2_update_fifo_status( uint32_t slice_cycle );
    55 struct dreamcast_module asic_module = { "ASIC", asic_init, asic_reset, NULL, asic_run_slice,
    56         NULL, asic_save_state, asic_load_state };
    58 #define G2_BIT5_TICKS 60
    59 #define G2_BIT4_TICKS 160
    60 #define G2_BIT0_ON_TICKS 120
    61 #define G2_BIT0_OFF_TICKS 420
    63 struct asic_g2_state {
    64     int bit5_off_timer;
    65     int bit4_on_timer;
    66     int bit4_off_timer;
    67     int bit0_on_timer;
    68     int bit0_off_timer;
    69 };
    71 static struct asic_g2_state g2_state;
    73 static uint32_t asic_run_slice( uint32_t nanosecs )
    74 {
    75     g2_update_fifo_status(nanosecs);
    76     if( g2_state.bit5_off_timer <= (int32_t)nanosecs ) {
    77         g2_state.bit5_off_timer = -1;
    78     } else {
    79         g2_state.bit5_off_timer -= nanosecs;
    80     }
    82     if( g2_state.bit4_off_timer <= (int32_t)nanosecs ) {
    83         g2_state.bit4_off_timer = -1;
    84     } else {
    85         g2_state.bit4_off_timer -= nanosecs;
    86     }
    87     if( g2_state.bit4_on_timer <= (int32_t)nanosecs ) {
    88         g2_state.bit4_on_timer = -1;
    89     } else {
    90         g2_state.bit4_on_timer -= nanosecs;
    91     }
    93     if( g2_state.bit0_off_timer <= (int32_t)nanosecs ) {
    94         g2_state.bit0_off_timer = -1;
    95     } else {
    96         g2_state.bit0_off_timer -= nanosecs;
    97     }
    98     if( g2_state.bit0_on_timer <= (int32_t)nanosecs ) {
    99         g2_state.bit0_on_timer = -1;
   100     } else {
   101         g2_state.bit0_on_timer -= nanosecs;
   102     }
   104     return nanosecs;
   105 }
   107 static void asic_init( void )
   108 {
   109     register_io_region( &mmio_region_ASIC );
   110     register_io_region( &mmio_region_EXTDMA );
   111     asic_reset();
   112 }
   114 static void asic_reset( void )
   115 {
   116     memset( &g2_state, 0xFF, sizeof(g2_state) );
   117 }    
   119 static void asic_save_state( FILE *f )
   120 {
   121     fwrite( &g2_state, sizeof(g2_state), 1, f );
   122 }
   124 static int asic_load_state( FILE *f )
   125 {
   126     if( fread( &g2_state, sizeof(g2_state), 1, f ) != 1 )
   127         return 1;
   128     else
   129         return 0;
   130 }
   133 /**
   134  * Setup the timers for the 3 FIFO status bits following a write through the G2
   135  * bus from the SH4 side. The timing is roughly as follows: (times are
   136  * approximate based on software readings - I wouldn't take this as gospel but
   137  * it seems to be enough to fool most programs). 
   138  *    0ns: Bit 5 (Input fifo?) goes high immediately on the write
   139  *   40ns: Bit 5 goes low and bit 4 goes high
   140  *  120ns: Bit 4 goes low, bit 0 goes high
   141  *  240ns: Bit 0 goes low.
   142  *
   143  * Additional writes while the FIFO is in operation extend the time that the
   144  * bits remain high as one might expect, without altering the time at which
   145  * they initially go high.
   146  */
   147 void asic_g2_write_word()
   148 {
   149     if( g2_state.bit5_off_timer < (int32_t)sh4r.slice_cycle ) {
   150         g2_state.bit5_off_timer = sh4r.slice_cycle + G2_BIT5_TICKS;
   151     } else {
   152         g2_state.bit5_off_timer += G2_BIT5_TICKS;
   153     }
   155     if( g2_state.bit4_on_timer < (int32_t)sh4r.slice_cycle ) {
   156         g2_state.bit4_on_timer = sh4r.slice_cycle + G2_BIT5_TICKS;
   157     }
   159     if( g2_state.bit4_off_timer < (int32_t)sh4r.slice_cycle ) {
   160         g2_state.bit4_off_timer = g2_state.bit4_on_timer + G2_BIT4_TICKS;
   161     } else {
   162         g2_state.bit4_off_timer += G2_BIT4_TICKS;
   163     }
   165     if( g2_state.bit0_on_timer < (int32_t)sh4r.slice_cycle ) {
   166         g2_state.bit0_on_timer = sh4r.slice_cycle + G2_BIT0_ON_TICKS;
   167     }
   169     if( g2_state.bit0_off_timer < (int32_t)sh4r.slice_cycle ) {
   170         g2_state.bit0_off_timer = g2_state.bit0_on_timer + G2_BIT0_OFF_TICKS;
   171     } else {
   172         g2_state.bit0_off_timer += G2_BIT0_OFF_TICKS;
   173     }
   175     MMIO_WRITE( ASIC, G2STATUS, MMIO_READ(ASIC, G2STATUS) | 0x20 );
   176 }
   178 static uint32_t g2_update_fifo_status( uint32_t nanos )
   179 {
   180     uint32_t val = MMIO_READ( ASIC, G2STATUS );
   181     if( ((uint32_t)g2_state.bit5_off_timer) <= nanos ) {
   182         val = val & (~0x20);
   183         g2_state.bit5_off_timer = -1;
   184     }
   185     if( ((uint32_t)g2_state.bit4_on_timer) <= nanos ) {
   186         val = val | 0x10;
   187         g2_state.bit4_on_timer = -1;
   188     }
   189     if( ((uint32_t)g2_state.bit4_off_timer) <= nanos ) {
   190         val = val & (~0x10);
   191         g2_state.bit4_off_timer = -1;
   192     } 
   194     if( ((uint32_t)g2_state.bit0_on_timer) <= nanos ) {
   195         val = val | 0x01;
   196         g2_state.bit0_on_timer = -1;
   197     }
   198     if( ((uint32_t)g2_state.bit0_off_timer) <= nanos ) {
   199         val = val & (~0x01);
   200         g2_state.bit0_off_timer = -1;
   201     } 
   203     MMIO_WRITE( ASIC, G2STATUS, val );
   204     return val;
   205 }   
   207 static int g2_read_status() {
   208     return g2_update_fifo_status( sh4r.slice_cycle );
   209 }
   212 void asic_event( int event )
   213 {
   214     int offset = ((event&0x60)>>3);
   215     int result = (MMIO_READ(ASIC, PIRQ0 + offset))  |=  (1<<(event&0x1F));
   217     if( result & MMIO_READ(ASIC, IRQA0 + offset) )
   218         intc_raise_interrupt( INT_IRQ13 );
   219     if( result & MMIO_READ(ASIC, IRQB0 + offset) )
   220         intc_raise_interrupt( INT_IRQ11 );
   221     if( result & MMIO_READ(ASIC, IRQC0 + offset) )
   222         intc_raise_interrupt( INT_IRQ9 );
   224     if( event >= 64 ) { /* Third word */
   225         asic_event( EVENT_CASCADE2 );
   226     } else if( event >= 32 ) { /* Second word */
   227         asic_event( EVENT_CASCADE1 );
   228     }
   229 }
   231 void asic_clear_event( int event ) {
   232     int offset = ((event&0x60)>>3);
   233     uint32_t result = MMIO_READ(ASIC, PIRQ0 + offset)  & (~(1<<(event&0x1F)));
   234     MMIO_WRITE( ASIC, PIRQ0 + offset, result );
   235     if( result == 0 ) {
   236         /* clear cascades if necessary */
   237         if( event >= 64 ) {
   238             MMIO_WRITE( ASIC, PIRQ0, MMIO_READ( ASIC, PIRQ0 ) & 0x7FFFFFFF );
   239         } else if( event >= 32 ) {
   240             MMIO_WRITE( ASIC, PIRQ0, MMIO_READ( ASIC, PIRQ0 ) & 0xBFFFFFFF );
   241         }
   242     }
   244     asic_check_cleared_events();
   245 }
   247 void asic_check_cleared_events( )
   248 {
   249     int i, setA = 0, setB = 0, setC = 0;
   250     uint32_t bits;
   251     for( i=0; i<12; i+=4 ) {
   252         bits = MMIO_READ( ASIC, PIRQ0 + i );
   253         setA |= (bits & MMIO_READ(ASIC, IRQA0 + i ));
   254         setB |= (bits & MMIO_READ(ASIC, IRQB0 + i ));
   255         setC |= (bits & MMIO_READ(ASIC, IRQC0 + i ));
   256     }
   257     if( setA == 0 )
   258         intc_clear_interrupt( INT_IRQ13 );
   259     if( setB == 0 )
   260         intc_clear_interrupt( INT_IRQ11 );
   261     if( setC == 0 )
   262         intc_clear_interrupt( INT_IRQ9 );
   263 }
   265 void asic_event_mask_changed( )
   266 {
   267     int i, setA = 0, setB = 0, setC = 0;
   268     uint32_t bits;
   269     for( i=0; i<12; i+=4 ) {
   270         bits = MMIO_READ( ASIC, PIRQ0 + i );
   271         setA |= (bits & MMIO_READ(ASIC, IRQA0 + i ));
   272         setB |= (bits & MMIO_READ(ASIC, IRQB0 + i ));
   273         setC |= (bits & MMIO_READ(ASIC, IRQC0 + i ));
   274     }
   275     if( setA == 0 ) 
   276         intc_clear_interrupt( INT_IRQ13 );
   277     else
   278         intc_raise_interrupt( INT_IRQ13 );
   279     if( setB == 0 )
   280         intc_clear_interrupt( INT_IRQ11 );
   281     else
   282         intc_raise_interrupt( INT_IRQ11 );
   283     if( setC == 0 )
   284         intc_clear_interrupt( INT_IRQ9 );
   285     else
   286         intc_raise_interrupt( INT_IRQ9 );
   287 }
   289 void g2_dma_transfer( int channel )
   290 {
   291     uint32_t offset = channel << 5;
   293     if( MMIO_READ( EXTDMA, G2DMA0CTL1 + offset ) == 1 ) {
   294         if( MMIO_READ( EXTDMA, G2DMA0CTL2 + offset ) == 1 ) {
   295             uint32_t extaddr = MMIO_READ( EXTDMA, G2DMA0EXT + offset );
   296             uint32_t sh4addr = MMIO_READ( EXTDMA, G2DMA0SH4 + offset );
   297             uint32_t length = MMIO_READ( EXTDMA, G2DMA0SIZ + offset ) & 0x1FFFFFFF;
   298             uint32_t dir = MMIO_READ( EXTDMA, G2DMA0DIR + offset );
   299             // uint32_t mode = MMIO_READ( EXTDMA, G2DMA0MOD + offset );
   300             unsigned char buf[length];
   301             if( dir == 0 ) { /* SH4 to device */
   302                 mem_copy_from_sh4( buf, sh4addr, length );
   303                 mem_copy_to_sh4( extaddr, buf, length );
   304             } else { /* Device to SH4 */
   305                 mem_copy_from_sh4( buf, extaddr, length );
   306                 mem_copy_to_sh4( sh4addr, buf, length );
   307             }
   308             MMIO_WRITE( EXTDMA, G2DMA0CTL2 + offset, 0 );
   309             asic_event( EVENT_G2_DMA0 + channel );
   310         } else {
   311             MMIO_WRITE( EXTDMA, G2DMA0CTL2 + offset, 0 );
   312         }
   313     }
   314 }
   316 void asic_ide_dma_transfer( )
   317 {	
   318     if( MMIO_READ( EXTDMA, IDEDMACTL2 ) == 1 ) {
   319         if( MMIO_READ( EXTDMA, IDEDMACTL1 ) == 1 ) {
   320             MMIO_WRITE( EXTDMA, IDEDMATXSIZ, 0 );
   322             uint32_t addr = MMIO_READ( EXTDMA, IDEDMASH4 );
   323             uint32_t length = MMIO_READ( EXTDMA, IDEDMASIZ );
   324             // int dir = MMIO_READ( EXTDMA, IDEDMADIR );
   326             uint32_t xfer = ide_read_data_dma( addr, length );
   327             MMIO_WRITE( EXTDMA, IDEDMATXSIZ, xfer );
   328             MMIO_WRITE( EXTDMA, IDEDMACTL2, 0 );
   329             asic_event( EVENT_IDE_DMA );            
   330         } else { /* 0 */
   331             MMIO_WRITE( EXTDMA, IDEDMACTL2, 0 );
   332         }
   333     }
   334 }
   336 void pvr_dma_transfer( )
   337 {
   338     sh4addr_t destaddr = MMIO_READ( ASIC, PVRDMADEST) &0x1FFFFFE0;
   339     uint32_t count = MMIO_READ( ASIC, PVRDMACNT );
   340     unsigned char data[8192];
   341     uint32_t rcount;
   343     while( count ) {
   344         uint32_t chunksize = (count < 8192) ? count : 8192;
   345         rcount = DMAC_get_buffer( 2, data, chunksize );
   346         pvr2_dma_write( destaddr, data, rcount );
   347         destaddr += rcount;
   348         count -= rcount;
   349         if( rcount != chunksize ) {
   350             WARN( "PVR received %08X bytes from DMA, expected %08X", rcount, chunksize );
   351             break;
   352         }
   353     }
   355     MMIO_WRITE( ASIC, PVRDMACTL, 0 );
   356     MMIO_WRITE( ASIC, PVRDMACNT, 0 );
   357     if( destaddr & 0x01000000 ) { /* Write to texture RAM */
   358         MMIO_WRITE( ASIC, PVRDMADEST, destaddr );
   359     }
   360     asic_event( EVENT_PVR_DMA );
   361 }
   363 void pvr_dma2_transfer()
   364 {
   365     if( MMIO_READ( EXTDMA, PVRDMA2CTL2 ) == 1 ) {
   366         if( MMIO_READ( EXTDMA, PVRDMA2CTL1 ) == 1 ) {
   367             sh4addr_t extaddr = MMIO_READ( EXTDMA, PVRDMA2EXT );
   368             sh4addr_t sh4addr = MMIO_READ( EXTDMA, PVRDMA2SH4 );
   369             int dir = MMIO_READ( EXTDMA, PVRDMA2DIR );
   370             uint32_t length = MMIO_READ( EXTDMA, PVRDMA2SIZ );
   371             unsigned char buf[length];
   372             if( dir == 0 ) { /* SH4 to PVR */
   373                 mem_copy_from_sh4( buf, sh4addr, length );
   374                 mem_copy_to_sh4( extaddr, buf, length );
   375             } else { /* PVR to SH4 */
   376                 mem_copy_from_sh4( buf, extaddr, length );
   377                 mem_copy_to_sh4( sh4addr, buf, length );
   378             }
   379             MMIO_WRITE( EXTDMA, PVRDMA2CTL2, 0 );
   380             asic_event( EVENT_PVR_DMA2 );
   381         }
   382     }
   383 }
   385 void sort_dma_transfer( )
   386 {
   387     sh4addr_t table_addr = MMIO_READ( ASIC, SORTDMATBL );
   388     sh4addr_t data_addr = MMIO_READ( ASIC, SORTDMADATA );
   389     int table_size = MMIO_READ( ASIC, SORTDMATSIZ );
   390     int addr_shift = MMIO_READ( ASIC, SORTDMAASIZ ) ? 5 : 0;
   391     int count = 1;
   393     uint32_t *table32 = (uint32_t *)mem_get_region( table_addr );
   394     uint16_t *table16 = (uint16_t *)table32;
   395     uint32_t next = table_size ? (*table32++) : (uint32_t)(*table16++);
   396     while(1) {
   397         next &= 0x07FFFFFF;
   398         if( next == 1 ) {
   399             next = table_size ? (*table32++) : (uint32_t)(*table16++);
   400             count++;
   401             continue;
   402         } else if( next == 2 ) {
   403             asic_event( EVENT_SORT_DMA );
   404             break;
   405         } 
   406         uint32_t *data = (uint32_t *)mem_get_region(data_addr + (next<<addr_shift));
   407         if( data == NULL ) {
   408             break;
   409         }
   411         uint32_t *poly = pvr2_ta_find_polygon_context(data, 128);
   412         if( poly == NULL ) {
   413             asic_event( EVENT_SORT_DMA_ERR );
   414             break;
   415         }
   416         uint32_t size = poly[6] & 0xFF;
   417         if( size == 0 ) {
   418             size = 0x100;
   419         }
   420         next = poly[7];
   421         pvr2_ta_write( (unsigned char *)data, size<<5 );
   422     }
   424     MMIO_WRITE( ASIC, SORTDMACNT, count );
   425     MMIO_WRITE( ASIC, SORTDMACTL, 0 );
   426 }
   428 void maple_set_dma_state( uint32_t val )
   429 {
   430     gboolean in_transfer = MMIO_READ( ASIC, MAPLE_STATE ) & 1;
   431     gboolean transfer_requested = val & 1;
   432     if( !in_transfer && transfer_requested ) {
   433         /* Initiate new DMA transfer */
   434         uint32_t maple_addr = MMIO_READ( ASIC, MAPLE_DMA) &0x1FFFFFE0;
   435         maple_handle_buffer( maple_addr );
   436     }
   437     else if ( in_transfer && !transfer_requested ) {
   438         /* Cancel current DMA transfer */
   439         event_cancel( EVENT_MAPLE_DMA );
   440     }
   441     MMIO_WRITE( ASIC, MAPLE_STATE, val );
   442 }
   444 gboolean asic_enable_ide_interface( gboolean enable )
   445 {
   446     gboolean oldval = idereg.interface_enabled;
   447     idereg.interface_enabled = enable;
   448     return oldval;
   449 }
   451 MMIO_REGION_READ_FN( ASIC, reg )
   452 {
   453     int32_t val;
   454     reg &= 0xFFF;
   455     switch( reg ) {
   456     case PIRQ0:
   457     case PIRQ1:
   458     case PIRQ2:
   459     case IRQA0:
   460     case IRQA1:
   461     case IRQA2:
   462     case IRQB0:
   463     case IRQB1:
   464     case IRQB2:
   465     case IRQC0:
   466     case IRQC1:
   467     case IRQC2:
   468     case MAPLE_STATE:
   469         val = MMIO_READ(ASIC, reg);
   470         return val;            
   471     case G2STATUS:
   472         return g2_read_status();
   473     default:
   474         val = MMIO_READ(ASIC, reg);
   475         return val;
   476     }
   478 }
   480 MMIO_REGION_READ_DEFSUBFNS(ASIC)
   482 MMIO_REGION_WRITE_FN( ASIC, reg, val )
   483 {
   484     reg &= 0xFFF;
   485     switch( reg ) {
   486     case PIRQ1:
   487         break; /* Treat this as read-only for the moment */
   488     case PIRQ0:
   489         val = val & 0x3FFFFFFF; /* Top two bits aren't clearable */
   490         MMIO_WRITE( ASIC, reg, MMIO_READ(ASIC, reg)&~val );
   491         asic_check_cleared_events();
   492         break;
   493     case PIRQ2:
   494         /* Clear any events */
   495         val = MMIO_READ(ASIC, reg)&(~val);
   496         MMIO_WRITE( ASIC, reg, val );
   497         if( val == 0 ) { /* all clear - clear the cascade bit */
   498             MMIO_WRITE( ASIC, PIRQ0, MMIO_READ( ASIC, PIRQ0 ) & 0x7FFFFFFF );
   499         }
   500         asic_check_cleared_events();
   501         break;
   502     case IRQA0:
   503     case IRQA1:
   504     case IRQA2:
   505     case IRQB0:
   506     case IRQB1:
   507     case IRQB2:
   508     case IRQC0:
   509     case IRQC1:
   510     case IRQC2:
   511         MMIO_WRITE( ASIC, reg, val );
   512         asic_event_mask_changed();
   513         break;
   514     case SYSRESET:
   515         if( val == 0x7611 ) {
   516             dreamcast_reset();
   517         } else {
   518             WARN( "Unknown value %08X written to SYSRESET port", val );
   519         }
   520         break;
   521     case MAPLE_STATE:
   522         maple_set_dma_state( val );
   523         break;
   524     case PVRDMADEST:
   525         MMIO_WRITE( ASIC, reg, (val & 0x03FFFFE0) | 0x10000000 );
   526         break;
   527     case PVRDMACNT: 
   528         MMIO_WRITE( ASIC, reg, val & 0x00FFFFE0 );
   529         break;
   530     case PVRDMACTL: /* Initiate PVR DMA transfer */
   531         val = val & 0x01;
   532         MMIO_WRITE( ASIC, reg, val );
   533         if( val == 1 ) {
   534             pvr_dma_transfer();
   535         }
   536         break;
   537     case SORTDMATBL: case SORTDMADATA:
   538         MMIO_WRITE( ASIC, reg, (val & 0x0FFFFFE0) | 0x08000000 );
   539         break;
   540     case SORTDMATSIZ: case SORTDMAASIZ:
   541         MMIO_WRITE( ASIC, reg, (val & 1) );
   542         break;
   543     case SORTDMACTL:
   544         val = val & 1;
   545         MMIO_WRITE( ASIC, reg, val );
   546         if( val == 1 ) {
   547             sort_dma_transfer();
   548         }
   549         break;
   550     case MAPLE_DMA:
   551         MMIO_WRITE( ASIC, reg, val );
   552         break;
   553     default:
   554         MMIO_WRITE( ASIC, reg, val );
   555     }
   556 }
   558 MMIO_REGION_READ_FN( EXTDMA, reg )
   559 {
   560     uint32_t val;
   561     reg &= 0xFFF;
   562     if( !idereg.interface_enabled && IS_IDE_REGISTER(reg) ) {
   563         return 0xFFFFFFFF; /* disabled */
   564     }
   566     switch( reg ) {
   567     case IDEALTSTATUS: 
   568         val = idereg.status;
   569         return val;
   570     case IDEDATA: return ide_read_data_pio( );
   571     case IDEFEAT: return idereg.error;
   572     case IDECOUNT:return idereg.count;
   573     case IDELBA0: return ide_get_drive_status();
   574     case IDELBA1: return idereg.lba1;
   575     case IDELBA2: return idereg.lba2;
   576     case IDEDEV: return idereg.device;
   577     case IDECMD:
   578         val = ide_read_status();
   579         return val;
   580     default:
   581         val = MMIO_READ( EXTDMA, reg );
   582         return val;
   583     }
   584 }
   585 MMIO_REGION_READ_DEFSUBFNS(EXTDMA)
   588 MMIO_REGION_WRITE_FN( EXTDMA, reg, val )
   589 {
   590     reg &= 0xFFF;
   591     if( !idereg.interface_enabled && IS_IDE_REGISTER(reg) ) {
   592         return; /* disabled */
   593     }
   595     switch( reg ) {
   596     case IDEALTSTATUS: /* Device control */
   597         ide_write_control( val );
   598         break;
   599     case IDEDATA:
   600         ide_write_data_pio( val );
   601         break;
   602     case IDEFEAT:
   603         if( ide_can_write_regs() )
   604             idereg.feature = (uint8_t)val;
   605         break;
   606     case IDECOUNT:
   607         if( ide_can_write_regs() )
   608             idereg.count = (uint8_t)val;
   609         break;
   610     case IDELBA0:
   611         if( ide_can_write_regs() )
   612             idereg.lba0 = (uint8_t)val;
   613         break;
   614     case IDELBA1:
   615         if( ide_can_write_regs() )
   616             idereg.lba1 = (uint8_t)val;
   617         break;
   618     case IDELBA2:
   619         if( ide_can_write_regs() )
   620             idereg.lba2 = (uint8_t)val;
   621         break;
   622     case IDEDEV:
   623         if( ide_can_write_regs() )
   624             idereg.device = (uint8_t)val;
   625         break;
   626     case IDECMD:
   627         if( ide_can_write_regs() || val == IDE_CMD_NOP ) {
   628             ide_write_command( (uint8_t)val );
   629         }
   630         break;
   631     case IDEDMASH4:
   632         MMIO_WRITE( EXTDMA, reg, val & 0x1FFFFFE0 );
   633         break;
   634     case IDEDMASIZ:
   635         MMIO_WRITE( EXTDMA, reg, val & 0x01FFFFFE );
   636         break;
   637     case IDEDMADIR:
   638         MMIO_WRITE( EXTDMA, reg, val & 1 );
   639         break;
   640     case IDEDMACTL1:
   641     case IDEDMACTL2:
   642         MMIO_WRITE( EXTDMA, reg, val & 0x01 );
   643         asic_ide_dma_transfer( );
   644         break;
   645     case IDEACTIVATE:
   646         if( val == 0x001FFFFF ) {
   647             idereg.interface_enabled = TRUE;
   648             /* Conventional wisdom says that this is necessary but not
   649              * sufficient to enable the IDE interface.
   650              */
   651         } else if( val == 0x000042FE ) {
   652             idereg.interface_enabled = FALSE;
   653         }
   654         break;
   655     case G2DMA0EXT: case G2DMA0SH4: case G2DMA0SIZ:
   656     case G2DMA1EXT: case G2DMA1SH4: case G2DMA1SIZ:
   657     case G2DMA2EXT: case G2DMA2SH4: case G2DMA2SIZ:
   658     case G2DMA3EXT: case G2DMA3SH4: case G2DMA3SIZ:
   659         MMIO_WRITE( EXTDMA, reg, val & 0x9FFFFFE0 );
   660         break;
   661     case G2DMA0MOD: case G2DMA1MOD: case G2DMA2MOD: case G2DMA3MOD:
   662         MMIO_WRITE( EXTDMA, reg, val & 0x07 );
   663         break;
   664     case G2DMA0DIR: case G2DMA1DIR: case G2DMA2DIR: case G2DMA3DIR:
   665         MMIO_WRITE( EXTDMA, reg, val & 0x01 );
   666         break;
   667     case G2DMA0CTL1:
   668     case G2DMA0CTL2:
   669         MMIO_WRITE( EXTDMA, reg, val & 1);
   670         g2_dma_transfer( 0 );
   671         break;
   672     case G2DMA0STOP:
   673         MMIO_WRITE( EXTDMA, reg, val & 0x37 );
   674         break;
   675     case G2DMA1CTL1:
   676     case G2DMA1CTL2:
   677         MMIO_WRITE( EXTDMA, reg, val & 1);
   678         g2_dma_transfer( 1 );
   679         break;
   681     case G2DMA1STOP:
   682         MMIO_WRITE( EXTDMA, reg, val & 0x37 );
   683         break;
   684     case G2DMA2CTL1:
   685     case G2DMA2CTL2:
   686         MMIO_WRITE( EXTDMA, reg, val &1 );
   687         g2_dma_transfer( 2 );
   688         break;
   689     case G2DMA2STOP:
   690         MMIO_WRITE( EXTDMA, reg, val & 0x37 );
   691         break;
   692     case G2DMA3CTL1:
   693     case G2DMA3CTL2:
   694         MMIO_WRITE( EXTDMA, reg, val &1 );
   695         g2_dma_transfer( 3 );
   696         break;
   697     case G2DMA3STOP:
   698         MMIO_WRITE( EXTDMA, reg, val & 0x37 );
   699         break;
   700     case PVRDMA2CTL1:
   701     case PVRDMA2CTL2:
   702         MMIO_WRITE( EXTDMA, reg, val & 1 );
   703         pvr_dma2_transfer();
   704         break;
   705     default:
   706         MMIO_WRITE( EXTDMA, reg, val );
   707     }
   708 }
.