Search
lxdream.org :: lxdream/src/sh4/xltcache.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/xltcache.c
changeset 580:508dc852a8eb
prev571:9bc09948d0f2
author nkeynes
date Tue Jan 15 02:20:30 2008 +0000 (14 years ago)
branchlxdream-mmu
permissions -rw-r--r--
last change Fix x86-64 support for mmu changes
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * Translation cache management. This part is architecture independent.
     5  *
     6  * Copyright (c) 2005 Nathan Keynes.
     7  *
     8  * This program is free software; you can redistribute it and/or modify
     9  * it under the terms of the GNU General Public License as published by
    10  * the Free Software Foundation; either version 2 of the License, or
    11  * (at your option) any later version.
    12  *
    13  * This program is distributed in the hope that it will be useful,
    14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    16  * GNU General Public License for more details.
    17  */
    19 #include <sys/types.h>
    20 #include <sys/mman.h>
    21 #include <assert.h>
    23 #include "dreamcast.h"
    24 #include "sh4/sh4core.h"
    25 #include "sh4/xltcache.h"
    26 #include "x86dasm/x86dasm.h"
    28 #define XLAT_LUT_PAGE_BITS 12
    29 #define XLAT_LUT_TOTAL_BITS 28
    30 #define XLAT_LUT_PAGE(addr) (((addr)>>13) & 0xFFFF)
    31 #define XLAT_LUT_ENTRY(addr) (((addr)&0x1FFE) >> 1)
    33 #define XLAT_LUT_PAGES (1<<(XLAT_LUT_TOTAL_BITS-XLAT_LUT_PAGE_BITS))
    34 #define XLAT_LUT_PAGE_ENTRIES (1<<XLAT_LUT_PAGE_BITS)
    35 #define XLAT_LUT_PAGE_SIZE (XLAT_LUT_PAGE_ENTRIES * sizeof(void *))
    37 #define XLAT_LUT_ENTRY_EMPTY (void *)0
    38 #define XLAT_LUT_ENTRY_USED  (void *)1
    40 #define NEXT(block) ( (xlat_cache_block_t)&((block)->code[(block)->size]))
    41 #define BLOCK_FOR_CODE(code) (((xlat_cache_block_t)code)-1)
    42 #define IS_ENTRY_POINT(ent) (ent > XLAT_LUT_ENTRY_USED)
    43 #define IS_ENTRY_USED(ent) (ent != XLAT_LUT_ENTRY_EMPTY)
    45 #define MIN_BLOCK_SIZE 32
    46 #define MIN_TOTAL_SIZE (sizeof(struct xlat_cache_block)+MIN_BLOCK_SIZE)
    48 #define BLOCK_INACTIVE 0
    49 #define BLOCK_ACTIVE 1
    50 #define BLOCK_USED 2
    52 xlat_cache_block_t xlat_new_cache;
    53 xlat_cache_block_t xlat_new_cache_ptr;
    54 xlat_cache_block_t xlat_new_create_ptr;
    55 xlat_cache_block_t xlat_temp_cache;
    56 xlat_cache_block_t xlat_temp_cache_ptr;
    57 xlat_cache_block_t xlat_old_cache;
    58 xlat_cache_block_t xlat_old_cache_ptr;
    59 static void ***xlat_lut;
    60 static gboolean xlat_initialized = FALSE;
    62 void xlat_cache_init(void) 
    63 {
    64     if( !xlat_initialized ) {
    65 	xlat_initialized = TRUE;
    66 	xlat_new_cache = mmap( NULL, XLAT_NEW_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    67 			       MAP_PRIVATE|MAP_ANON, -1, 0 );
    68 	xlat_temp_cache = mmap( NULL, XLAT_TEMP_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    69 				MAP_PRIVATE|MAP_ANON, -1, 0 );
    70 	xlat_old_cache = mmap( NULL, XLAT_OLD_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    71 			       MAP_PRIVATE|MAP_ANON, -1, 0 );
    72 	xlat_new_cache_ptr = xlat_new_cache;
    73 	xlat_temp_cache_ptr = xlat_temp_cache;
    74 	xlat_old_cache_ptr = xlat_old_cache;
    75 	xlat_new_create_ptr = xlat_new_cache;
    77 	xlat_lut = mmap( NULL, XLAT_LUT_PAGES*sizeof(void *), PROT_READ|PROT_WRITE,
    78 			 MAP_PRIVATE|MAP_ANON, -1, 0);
    79 	memset( xlat_lut, 0, XLAT_LUT_PAGES*sizeof(void *) );
    80     }
    81     xlat_flush_cache();
    82 }
    84 void xlat_print_free( FILE *out )
    85 {
    86     fprintf( out, "New space: %d\nTemp space: %d\nOld space: %d\n", 
    87 	     xlat_new_cache_ptr->size, xlat_temp_cache_ptr->size, xlat_old_cache_ptr->size );
    88 }
    90 /**
    91  * Reset the cache structure to its default state
    92  */
    93 void xlat_flush_cache() 
    94 {
    95     xlat_cache_block_t tmp;
    96     int i;
    97     xlat_new_cache_ptr = xlat_new_cache;
    98     xlat_new_cache_ptr->active = 0;
    99     xlat_new_cache_ptr->size = XLAT_NEW_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   100     tmp = NEXT(xlat_new_cache_ptr);
   101     tmp->active = 1;
   102     tmp->size = 0;
   103     xlat_temp_cache_ptr = xlat_temp_cache;
   104     xlat_temp_cache_ptr->active = 0;
   105     xlat_temp_cache_ptr->size = XLAT_TEMP_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   106     tmp = NEXT(xlat_temp_cache_ptr);
   107     tmp->active = 1;
   108     tmp->size = 0;
   109     xlat_old_cache_ptr = xlat_old_cache;
   110     xlat_old_cache_ptr->active = 0;
   111     xlat_old_cache_ptr->size = XLAT_OLD_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   112     tmp = NEXT(xlat_old_cache_ptr);
   113     tmp->active = 1;
   114     tmp->size = 0;
   115     for( i=0; i<XLAT_LUT_PAGES; i++ ) {
   116 	if( xlat_lut[i] != NULL ) {
   117 	    memset( xlat_lut[i], 0, XLAT_LUT_PAGE_SIZE );
   118 	}
   119     }
   120 }
   122 static void xlat_flush_page_by_lut( void **page )
   123 {
   124     int i;
   125     for( i=0; i<XLAT_LUT_PAGE_ENTRIES; i++ ) {
   126 	if( IS_ENTRY_POINT(page[i]) ) {
   127 	    BLOCK_FOR_CODE(page[i])->active = 0;
   128 	}
   129 	page[i] = NULL;
   130     }
   131 }
   133 void xlat_invalidate_word( sh4addr_t addr )
   134 {
   135     if( xlat_lut ) {
   136 	void **page = xlat_lut[XLAT_LUT_PAGE(addr)];
   137 	if( page != NULL ) {
   138 	    int entry = XLAT_LUT_ENTRY(addr);
   139 	    if( page[entry] != NULL ) {
   140 		xlat_flush_page_by_lut(page);
   141 	    }
   142 	}
   143     }
   144 }
   146 void xlat_invalidate_long( sh4addr_t addr )
   147 {
   148     if( xlat_lut ) {
   149 	void **page = xlat_lut[XLAT_LUT_PAGE(addr)];
   150 	if( page != NULL ) {
   151 	    int entry = XLAT_LUT_ENTRY(addr);
   152 	    if( page[entry] != NULL || page[entry+1] != NULL ) {
   153 		xlat_flush_page_by_lut(page);
   154 	    }
   155 	}
   156     }
   157 }
   159 void xlat_invalidate_block( sh4addr_t address, size_t size )
   160 {
   161     int i;
   162     int entry_count = size >> 1; // words;
   163     uint32_t page_no = XLAT_LUT_PAGE(address);
   164     int entry = XLAT_LUT_ENTRY(address);
   165     if( xlat_lut ) {
   166 	do {
   167 	    void **page = xlat_lut[page_no];
   168 	    int page_entries = XLAT_LUT_PAGE_ENTRIES - entry;
   169 	    if( entry_count < page_entries ) {
   170 		page_entries = entry_count;
   171 	    }
   172 	    if( page != NULL ) {
   173 		if( page_entries == XLAT_LUT_PAGE_ENTRIES ) {
   174 		    /* Overwriting the entire page anyway */
   175 		    xlat_flush_page_by_lut(page);
   176 		} else {
   177 		    for( i=entry; i<entry+page_entries; i++ ) {
   178 			if( page[i] != NULL ) {
   179 			    xlat_flush_page_by_lut(page);
   180 			    break;
   181 			}
   182 		    }
   183 		}
   184 		entry_count -= page_entries;
   185 	    }
   186 	    page_no ++;
   187 	    entry_count -= page_entries;
   188 	    entry = 0;
   189 	} while( entry_count > 0 );
   190     }
   191 }
   193 void xlat_flush_page( sh4addr_t address )
   194 {
   195     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   196     if( page != NULL ) {
   197 	xlat_flush_page_by_lut(page);
   198     }
   199 }
   201 void *xlat_get_code( sh4addr_t address )
   202 {
   203     void *result = NULL;
   204     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   205     if( page != NULL ) {
   206 	result = (void *)(((uintptr_t)(page[XLAT_LUT_ENTRY(address)])) & (~((uintptr_t)0x03)));
   207     }
   208     return result;
   209 }
   211 xlat_recovery_record_t xlat_get_recovery( void *code, void *native_pc, gboolean recover_after )
   212 {
   213     if( code != NULL ) {
   214 	xlat_cache_block_t block = BLOCK_FOR_CODE(code);
   215 	uint32_t count = block->recover_table_size;
   216 	xlat_recovery_record_t records = block->recover_table;
   217 	uint32_t posn;
   218 	if( recover_after ) {
   219 	    if( records[count-1].xlat_pc <= (uintptr_t)native_pc ) {
   220 		return NULL;
   221 	    }
   222 	    for( posn=count-1; posn > 0; posn-- ) {
   223 		if( records[posn-1].xlat_pc < (uintptr_t)native_pc ) {
   224 		    return &records[posn];
   225 		}
   226 	    }
   227 	    return &records[0]; // shouldn't happen
   228 	} else {
   229 	    for( posn = 1; posn < count; posn++ ) {
   230 		if( records[posn].xlat_pc >= (uintptr_t)native_pc ) {
   231 		    return &records[posn-1];
   232 		}
   233 	    }
   234 	    return &records[count-1];
   235 	}
   236     }
   237     return NULL;
   238 }
   240 void **xlat_get_lut_entry( sh4addr_t address )
   241 {
   242     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   244     /* Add the LUT entry for the block */
   245     if( page == NULL ) {
   246 	xlat_lut[XLAT_LUT_PAGE(address)] = page =
   247 	    mmap( NULL, XLAT_LUT_PAGE_SIZE, PROT_READ|PROT_WRITE,
   248 		  MAP_PRIVATE|MAP_ANON, -1, 0 );
   249 	memset( page, 0, XLAT_LUT_PAGE_SIZE );
   250     }
   252     return &page[XLAT_LUT_ENTRY(address)];
   253 }
   257 uint32_t xlat_get_block_size( void *block )
   258 {
   259     xlat_cache_block_t xlt = (xlat_cache_block_t)(((char *)block)-sizeof(struct xlat_cache_block));
   260     return xlt->size;
   261 }
   263 uint32_t xlat_get_code_size( void *block )
   264 {
   265     xlat_cache_block_t xlt = (xlat_cache_block_t)(((char *)block)-sizeof(struct xlat_cache_block));
   266     if( xlt->recover_table == NULL ) {
   267 	return xlt->size;
   268     } else {
   269 	return ((uint8_t *)xlt->recover_table) - ((uint8_t *)block);
   270     }
   271 }
   273 /**
   274  * Cut the specified block so that it has the given size, with the remaining data
   275  * forming a new free block. If the free block would be less than the minimum size,
   276  * the cut is not performed.
   277  * @return the next block after the (possibly cut) block.
   278  */
   279 static inline xlat_cache_block_t xlat_cut_block( xlat_cache_block_t block, int cutsize )
   280 {
   281     cutsize = (cutsize + 3) & 0xFFFFFFFC; // force word alignment
   282     assert( cutsize <= block->size );
   283     if( block->size > cutsize + MIN_TOTAL_SIZE ) {
   284 	int oldsize = block->size;
   285 	block->size = cutsize;
   286 	xlat_cache_block_t next = NEXT(block);
   287 	next->active = 0;
   288 	next->size = oldsize - cutsize - sizeof(struct xlat_cache_block);
   289 	return next;
   290     } else {
   291 	return NEXT(block);
   292     }
   293 }
   295 /**
   296  * Promote a block in temp space (or elsewhere for that matter) to old space.
   297  *
   298  * @param block to promote.
   299  */
   300 static void xlat_promote_to_old_space( xlat_cache_block_t block )
   301 {
   302     int allocation = -sizeof(struct xlat_cache_block);
   303     int size = block->size;
   304     xlat_cache_block_t curr = xlat_old_cache_ptr;
   305     xlat_cache_block_t start_block = curr;
   306     do {
   307 	allocation += curr->size + sizeof(struct xlat_cache_block);
   308 	curr = NEXT(curr);
   309 	if( allocation > size ) {
   310 	    break; /* done */
   311 	}
   312 	if( curr->size == 0 ) { /* End-of-cache Sentinel */
   313 	    /* Leave what we just released as free space and start again from the
   314 	     * top of the cache
   315 	     */
   316 	    start_block->active = 0;
   317 	    start_block->size = allocation;
   318 	    allocation = -sizeof(struct xlat_cache_block);
   319 	    start_block = curr = xlat_old_cache;
   320 	}
   321     } while(1);
   322     start_block->active = 1;
   323     start_block->size = allocation;
   324     start_block->lut_entry = block->lut_entry;
   325     *block->lut_entry = &start_block->code;
   326     memcpy( start_block->code, block->code, block->size );
   327     xlat_old_cache_ptr = xlat_cut_block(start_block, size );
   328     if( xlat_old_cache_ptr->size == 0 ) {
   329 	xlat_old_cache_ptr = xlat_old_cache;
   330     }
   331 }
   333 /**
   334  * Similarly to the above method, promotes a block to temp space.
   335  * TODO: Try to combine these - they're nearly identical
   336  */
   337 void xlat_promote_to_temp_space( xlat_cache_block_t block )
   338 {
   339     int size = block->size;
   340     int allocation = -sizeof(struct xlat_cache_block);
   341     xlat_cache_block_t curr = xlat_temp_cache_ptr;
   342     xlat_cache_block_t start_block = curr;
   343     do {
   344 	if( curr->active == BLOCK_USED ) {
   345 	    xlat_promote_to_old_space( curr );
   346 	}
   347 	allocation += curr->size + sizeof(struct xlat_cache_block);
   348 	curr = NEXT(curr);
   349 	if( allocation > size ) {
   350 	    break; /* done */
   351 	}
   352 	if( curr->size == 0 ) { /* End-of-cache Sentinel */
   353 	    /* Leave what we just released as free space and start again from the
   354 	     * top of the cache
   355 	     */
   356 	    start_block->active = 0;
   357 	    start_block->size = allocation;
   358 	    allocation = -sizeof(struct xlat_cache_block);
   359 	    start_block = curr = xlat_temp_cache;
   360 	}
   361     } while(1);
   362     start_block->active = 1;
   363     start_block->size = allocation;
   364     start_block->lut_entry = block->lut_entry;
   365     *block->lut_entry = &start_block->code;
   366     memcpy( start_block->code, block->code, block->size );
   367     xlat_temp_cache_ptr = xlat_cut_block(start_block, size );
   368     if( xlat_temp_cache_ptr->size == 0 ) {
   369 	xlat_temp_cache_ptr = xlat_temp_cache;
   370     }
   372 }
   374 /**
   375  * Returns the next block in the new cache list that can be written to by the
   376  * translator. If the next block is active, it is evicted first.
   377  */
   378 xlat_cache_block_t xlat_start_block( sh4addr_t address )
   379 {
   380     if( xlat_new_cache_ptr->size == 0 ) {
   381 	xlat_new_cache_ptr = xlat_new_cache;
   382     }
   384     if( xlat_new_cache_ptr->active ) {
   385 	xlat_promote_to_temp_space( xlat_new_cache_ptr );
   386     }
   387     xlat_new_create_ptr = xlat_new_cache_ptr;
   388     xlat_new_create_ptr->active = 1;
   389     xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   391     /* Add the LUT entry for the block */
   392     if( xlat_lut[XLAT_LUT_PAGE(address)] == NULL ) {
   393 	xlat_lut[XLAT_LUT_PAGE(address)] =
   394 	    mmap( NULL, XLAT_LUT_PAGE_SIZE, PROT_READ|PROT_WRITE,
   395 		  MAP_PRIVATE|MAP_ANON, -1, 0 );
   396 	memset( xlat_lut[XLAT_LUT_PAGE(address)], 0, XLAT_LUT_PAGE_SIZE );
   397     }
   399     if( IS_ENTRY_POINT(xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)]) ) {
   400 	xlat_cache_block_t oldblock = BLOCK_FOR_CODE(xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)]);
   401 	oldblock->active = 0;
   402     }
   404     xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)] = 
   405 	&xlat_new_create_ptr->code;
   406     xlat_new_create_ptr->lut_entry = xlat_lut[XLAT_LUT_PAGE(address)] + XLAT_LUT_ENTRY(address);
   408     return xlat_new_create_ptr;
   409 }
   411 xlat_cache_block_t xlat_extend_block( uint32_t newSize )
   412 {
   413     while( xlat_new_create_ptr->size < newSize ) {
   414 	if( xlat_new_cache_ptr->size == 0 ) {
   415 	    /* Migrate to the front of the cache to keep it contiguous */
   416 	    xlat_new_create_ptr->active = 0;
   417 	    sh4ptr_t olddata = xlat_new_create_ptr->code;
   418 	    int oldsize = xlat_new_create_ptr->size;
   419 	    int size = oldsize + MIN_BLOCK_SIZE; /* minimum expansion */
   420 	    void **lut_entry = xlat_new_create_ptr->lut_entry;
   421 	    int allocation = -sizeof(struct xlat_cache_block);
   422 	    xlat_new_cache_ptr = xlat_new_cache;
   423 	    do {
   424 		if( xlat_new_cache_ptr->active ) {
   425 		    xlat_promote_to_temp_space( xlat_new_cache_ptr );
   426 		}
   427 		allocation += xlat_new_cache_ptr->size + sizeof(struct xlat_cache_block);
   428 		xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   429 	    } while( allocation < size );
   430 	    xlat_new_create_ptr = xlat_new_cache;
   431 	    xlat_new_create_ptr->active = 1;
   432 	    xlat_new_create_ptr->size = allocation;
   433 	    xlat_new_create_ptr->lut_entry = lut_entry;
   434 	    *lut_entry = &xlat_new_create_ptr->code;
   435 	    memmove( xlat_new_create_ptr->code, olddata, oldsize );
   436 	} else {
   437 	    if( xlat_new_cache_ptr->active ) {
   438 		xlat_promote_to_temp_space( xlat_new_cache_ptr );
   439 	    }
   440 	    xlat_new_create_ptr->size += xlat_new_cache_ptr->size + sizeof(struct xlat_cache_block);
   441 	    xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   442 	}
   443     }
   444     return xlat_new_create_ptr;
   446 }
   448 void xlat_commit_block( uint32_t destsize, uint32_t srcsize )
   449 {
   450     void **ptr = xlat_new_create_ptr->lut_entry;
   451     void **endptr = ptr + (srcsize>>2);
   452     while( ptr < endptr ) {
   453 	if( *ptr == NULL ) {
   454 	    *ptr = XLAT_LUT_ENTRY_USED;
   455 	}
   456 	ptr++;
   457     }
   459     xlat_new_cache_ptr = xlat_cut_block( xlat_new_create_ptr, destsize );
   460 }
   462 void xlat_delete_block( xlat_cache_block_t block ) 
   463 {
   464     block->active = 0;
   465     *block->lut_entry = NULL;
   466 }
   468 void xlat_check_cache_integrity( xlat_cache_block_t cache, xlat_cache_block_t ptr, int size )
   469 {
   470     int foundptr = 0;
   471     xlat_cache_block_t tail = 
   472 	(xlat_cache_block_t)(((char *)cache) + size - sizeof(struct xlat_cache_block));
   474     assert( tail->active == 1 );
   475     assert( tail->size == 0 ); 
   476     while( cache < tail ) {
   477 	assert( cache->active >= 0 && cache->active <= 2 );
   478 	assert( cache->size >= 0 && cache->size < size );
   479 	if( cache == ptr ) {
   480 	    foundptr = 1;
   481 	}
   482 	cache = NEXT(cache);
   483     }
   484     assert( cache == tail );
   485     assert( foundptr == 1 );
   486 }
   488 void xlat_check_integrity( )
   489 {
   490     xlat_check_cache_integrity( xlat_new_cache, xlat_new_cache_ptr, XLAT_NEW_CACHE_SIZE );
   491     xlat_check_cache_integrity( xlat_temp_cache, xlat_temp_cache_ptr, XLAT_TEMP_CACHE_SIZE );
   492     xlat_check_cache_integrity( xlat_old_cache, xlat_old_cache_ptr, XLAT_OLD_CACHE_SIZE );
   493 }
.