Search
lxdream.org :: lxdream/src/sh4/xltcache.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/xltcache.c
changeset 617:476a717a54f3
prev596:dfc0c93d882e
next736:a02d1475ccfd
author nkeynes
date Fri Feb 08 00:06:56 2008 +0000 (12 years ago)
permissions -rw-r--r--
last change Fix LDS/STS to FPUL/FPSCR to check the FPU disabled bit. Fixes
the linux 2.4.0-test8 kernel boot
(this wasn't exactly very well documented in the original manual)
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * Translation cache management. This part is architecture independent.
     5  *
     6  * Copyright (c) 2005 Nathan Keynes.
     7  *
     8  * This program is free software; you can redistribute it and/or modify
     9  * it under the terms of the GNU General Public License as published by
    10  * the Free Software Foundation; either version 2 of the License, or
    11  * (at your option) any later version.
    12  *
    13  * This program is distributed in the hope that it will be useful,
    14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    16  * GNU General Public License for more details.
    17  */
    19 #include <sys/types.h>
    20 #include <sys/mman.h>
    21 #include <assert.h>
    23 #include "dreamcast.h"
    24 #include "sh4/sh4core.h"
    25 #include "sh4/xltcache.h"
    26 #include "x86dasm/x86dasm.h"
    28 #define XLAT_LUT_PAGE_BITS 12
    29 #define XLAT_LUT_TOTAL_BITS 28
    30 #define XLAT_LUT_PAGE(addr) (((addr)>>13) & 0xFFFF)
    31 #define XLAT_LUT_ENTRY(addr) (((addr)&0x1FFE) >> 1)
    33 #define XLAT_LUT_PAGES (1<<(XLAT_LUT_TOTAL_BITS-XLAT_LUT_PAGE_BITS))
    34 #define XLAT_LUT_PAGE_ENTRIES (1<<XLAT_LUT_PAGE_BITS)
    35 #define XLAT_LUT_PAGE_SIZE (XLAT_LUT_PAGE_ENTRIES * sizeof(void *))
    37 #define XLAT_LUT_ENTRY_EMPTY (void *)0
    38 #define XLAT_LUT_ENTRY_USED  (void *)1
    40 #define NEXT(block) ( (xlat_cache_block_t)&((block)->code[(block)->size]))
    41 #define BLOCK_FOR_CODE(code) (((xlat_cache_block_t)code)-1)
    42 #define IS_ENTRY_POINT(ent) (ent > XLAT_LUT_ENTRY_USED)
    43 #define IS_ENTRY_USED(ent) (ent != XLAT_LUT_ENTRY_EMPTY)
    45 #define MIN_BLOCK_SIZE 32
    46 #define MIN_TOTAL_SIZE (sizeof(struct xlat_cache_block)+MIN_BLOCK_SIZE)
    48 #define BLOCK_INACTIVE 0
    49 #define BLOCK_ACTIVE 1
    50 #define BLOCK_USED 2
    52 xlat_cache_block_t xlat_new_cache;
    53 xlat_cache_block_t xlat_new_cache_ptr;
    54 xlat_cache_block_t xlat_new_create_ptr;
    55 xlat_cache_block_t xlat_temp_cache;
    56 xlat_cache_block_t xlat_temp_cache_ptr;
    57 xlat_cache_block_t xlat_old_cache;
    58 xlat_cache_block_t xlat_old_cache_ptr;
    59 static void ***xlat_lut;
    60 static gboolean xlat_initialized = FALSE;
    62 void xlat_cache_init(void) 
    63 {
    64     if( !xlat_initialized ) {
    65 	xlat_initialized = TRUE;
    66 	xlat_new_cache = mmap( NULL, XLAT_NEW_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    67 			       MAP_PRIVATE|MAP_ANON, -1, 0 );
    68 	xlat_temp_cache = mmap( NULL, XLAT_TEMP_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    69 				MAP_PRIVATE|MAP_ANON, -1, 0 );
    70 	xlat_old_cache = mmap( NULL, XLAT_OLD_CACHE_SIZE, PROT_EXEC|PROT_READ|PROT_WRITE,
    71 			       MAP_PRIVATE|MAP_ANON, -1, 0 );
    72 	xlat_new_cache_ptr = xlat_new_cache;
    73 	xlat_temp_cache_ptr = xlat_temp_cache;
    74 	xlat_old_cache_ptr = xlat_old_cache;
    75 	xlat_new_create_ptr = xlat_new_cache;
    77 	xlat_lut = mmap( NULL, XLAT_LUT_PAGES*sizeof(void *), PROT_READ|PROT_WRITE,
    78 			 MAP_PRIVATE|MAP_ANON, -1, 0);
    79 	memset( xlat_lut, 0, XLAT_LUT_PAGES*sizeof(void *) );
    80     }
    81     xlat_flush_cache();
    82 }
    84 void xlat_print_free( FILE *out )
    85 {
    86     fprintf( out, "New space: %d\nTemp space: %d\nOld space: %d\n", 
    87 	     xlat_new_cache_ptr->size, xlat_temp_cache_ptr->size, xlat_old_cache_ptr->size );
    88 }
    90 /**
    91  * Reset the cache structure to its default state
    92  */
    93 void xlat_flush_cache() 
    94 {
    95     xlat_cache_block_t tmp;
    96     int i;
    97     xlat_new_cache_ptr = xlat_new_cache;
    98     xlat_new_cache_ptr->active = 0;
    99     xlat_new_cache_ptr->size = XLAT_NEW_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   100     tmp = NEXT(xlat_new_cache_ptr);
   101     tmp->active = 1;
   102     tmp->size = 0;
   103     xlat_temp_cache_ptr = xlat_temp_cache;
   104     xlat_temp_cache_ptr->active = 0;
   105     xlat_temp_cache_ptr->size = XLAT_TEMP_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   106     tmp = NEXT(xlat_temp_cache_ptr);
   107     tmp->active = 1;
   108     tmp->size = 0;
   109     xlat_old_cache_ptr = xlat_old_cache;
   110     xlat_old_cache_ptr->active = 0;
   111     xlat_old_cache_ptr->size = XLAT_OLD_CACHE_SIZE - 2*sizeof(struct xlat_cache_block);
   112     tmp = NEXT(xlat_old_cache_ptr);
   113     tmp->active = 1;
   114     tmp->size = 0;
   115     for( i=0; i<XLAT_LUT_PAGES; i++ ) {
   116 	if( xlat_lut[i] != NULL ) {
   117 	    memset( xlat_lut[i], 0, XLAT_LUT_PAGE_SIZE );
   118 	}
   119     }
   120 }
   122 static void xlat_flush_page_by_lut( void **page )
   123 {
   124     int i;
   125     for( i=0; i<XLAT_LUT_PAGE_ENTRIES; i++ ) {
   126 	if( IS_ENTRY_POINT(page[i]) ) {
   127 	    BLOCK_FOR_CODE(page[i])->active = 0;
   128 	}
   129 	page[i] = NULL;
   130     }
   131 }
   133 void xlat_invalidate_word( sh4addr_t addr )
   134 {
   135     if( xlat_lut ) {
   136 	void **page = xlat_lut[XLAT_LUT_PAGE(addr)];
   137 	if( page != NULL ) {
   138 	    int entry = XLAT_LUT_ENTRY(addr);
   139 	    if( page[entry] != NULL ) {
   140 		xlat_flush_page_by_lut(page);
   141 	    }
   142 	}
   143     }
   144 }
   146 void xlat_invalidate_long( sh4addr_t addr )
   147 {
   148     if( xlat_lut ) {
   149 	void **page = xlat_lut[XLAT_LUT_PAGE(addr)];
   150 	if( page != NULL ) {
   151 	    int entry = XLAT_LUT_ENTRY(addr);
   152 	    if( page[entry] != NULL || page[entry+1] != NULL ) {
   153 		xlat_flush_page_by_lut(page);
   154 	    }
   155 	}
   156     }
   157 }
   159 void xlat_invalidate_block( sh4addr_t address, size_t size )
   160 {
   161     int i;
   162     int entry_count = size >> 1; // words;
   163     uint32_t page_no = XLAT_LUT_PAGE(address);
   164     int entry = XLAT_LUT_ENTRY(address);
   165     if( xlat_lut ) {
   166 	do {
   167 	    void **page = xlat_lut[page_no];
   168 	    int page_entries = XLAT_LUT_PAGE_ENTRIES - entry;
   169 	    if( entry_count < page_entries ) {
   170 		page_entries = entry_count;
   171 	    }
   172 	    if( page != NULL ) {
   173 		if( page_entries == XLAT_LUT_PAGE_ENTRIES ) {
   174 		    /* Overwriting the entire page anyway */
   175 		    xlat_flush_page_by_lut(page);
   176 		} else {
   177 		    for( i=entry; i<entry+page_entries; i++ ) {
   178 			if( page[i] != NULL ) {
   179 			    xlat_flush_page_by_lut(page);
   180 			    break;
   181 			}
   182 		    }
   183 		}
   184 		entry_count -= page_entries;
   185 	    }
   186 	    page_no ++;
   187 	    entry_count -= page_entries;
   188 	    entry = 0;
   189 	} while( entry_count > 0 );
   190     }
   191 }
   193 void xlat_flush_page( sh4addr_t address )
   194 {
   195     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   196     if( page != NULL ) {
   197 	xlat_flush_page_by_lut(page);
   198     }
   199 }
   201 void *xlat_get_code( sh4addr_t address )
   202 {
   203     void *result = NULL;
   204     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   205     if( page != NULL ) {
   206 	result = (void *)(((uintptr_t)(page[XLAT_LUT_ENTRY(address)])) & (~((uintptr_t)0x03)));
   207     }
   208     return result;
   209 }
   211 xlat_recovery_record_t xlat_get_recovery( void *code, void *native_pc, gboolean recover_after )
   212 {
   213     if( code != NULL ) {
   214 	uintptr_t pc_offset = ((uint8_t *)native_pc) - ((uint8_t *)code);
   215 	xlat_cache_block_t block = BLOCK_FOR_CODE(code);
   216 	uint32_t count = block->recover_table_size;
   217 	xlat_recovery_record_t records = (xlat_recovery_record_t)(&block->code[block->recover_table_offset]);
   218 	uint32_t posn;
   219 	if( recover_after ) {
   220 	    if( records[count-1].xlat_offset < pc_offset ) {
   221 		return NULL;
   222 	    }
   223 	    for( posn=count-1; posn > 0; posn-- ) {
   224 		if( records[posn-1].xlat_offset < pc_offset ) {
   225 		    return &records[posn];
   226 		}
   227 	    }
   228 	    return &records[0]; // shouldn't happen
   229 	} else {
   230 	    for( posn = 1; posn < count; posn++ ) {
   231 		if( records[posn].xlat_offset >= pc_offset ) {
   232 		    return &records[posn-1];
   233 		}
   234 	    }
   235 	    return &records[count-1];
   236 	}
   237     }
   238     return NULL;
   239 }
   241 void **xlat_get_lut_entry( sh4addr_t address )
   242 {
   243     void **page = xlat_lut[XLAT_LUT_PAGE(address)];
   245     /* Add the LUT entry for the block */
   246     if( page == NULL ) {
   247 	xlat_lut[XLAT_LUT_PAGE(address)] = page =
   248 	    mmap( NULL, XLAT_LUT_PAGE_SIZE, PROT_READ|PROT_WRITE,
   249 		  MAP_PRIVATE|MAP_ANON, -1, 0 );
   250 	memset( page, 0, XLAT_LUT_PAGE_SIZE );
   251     }
   253     return &page[XLAT_LUT_ENTRY(address)];
   254 }
   258 uint32_t xlat_get_block_size( void *block )
   259 {
   260     xlat_cache_block_t xlt = (xlat_cache_block_t)(((char *)block)-sizeof(struct xlat_cache_block));
   261     return xlt->size;
   262 }
   264 uint32_t xlat_get_code_size( void *block )
   265 {
   266     xlat_cache_block_t xlt = (xlat_cache_block_t)(((char *)block)-sizeof(struct xlat_cache_block));
   267     if( xlt->recover_table_offset == 0 ) {
   268 	return xlt->size;
   269     } else {
   270 	return xlt->recover_table_offset;
   271     }
   272 }
   274 /**
   275  * Cut the specified block so that it has the given size, with the remaining data
   276  * forming a new free block. If the free block would be less than the minimum size,
   277  * the cut is not performed.
   278  * @return the next block after the (possibly cut) block.
   279  */
   280 static inline xlat_cache_block_t xlat_cut_block( xlat_cache_block_t block, int cutsize )
   281 {
   282     cutsize = (cutsize + 3) & 0xFFFFFFFC; // force word alignment
   283     assert( cutsize <= block->size );
   284     if( block->size > cutsize + MIN_TOTAL_SIZE ) {
   285 	int oldsize = block->size;
   286 	block->size = cutsize;
   287 	xlat_cache_block_t next = NEXT(block);
   288 	next->active = 0;
   289 	next->size = oldsize - cutsize - sizeof(struct xlat_cache_block);
   290 	return next;
   291     } else {
   292 	return NEXT(block);
   293     }
   294 }
   296 /**
   297  * Promote a block in temp space (or elsewhere for that matter) to old space.
   298  *
   299  * @param block to promote.
   300  */
   301 static void xlat_promote_to_old_space( xlat_cache_block_t block )
   302 {
   303     int allocation = -sizeof(struct xlat_cache_block);
   304     int size = block->size;
   305     xlat_cache_block_t curr = xlat_old_cache_ptr;
   306     xlat_cache_block_t start_block = curr;
   307     do {
   308 	allocation += curr->size + sizeof(struct xlat_cache_block);
   309 	curr = NEXT(curr);
   310 	if( allocation > size ) {
   311 	    break; /* done */
   312 	}
   313 	if( curr->size == 0 ) { /* End-of-cache Sentinel */
   314 	    /* Leave what we just released as free space and start again from the
   315 	     * top of the cache
   316 	     */
   317 	    start_block->active = 0;
   318 	    start_block->size = allocation;
   319 	    allocation = -sizeof(struct xlat_cache_block);
   320 	    start_block = curr = xlat_old_cache;
   321 	}
   322     } while(1);
   323     start_block->active = 1;
   324     start_block->size = allocation;
   325     start_block->lut_entry = block->lut_entry;
   326     start_block->recover_table_offset = block->recover_table_offset;
   327     start_block->recover_table_size = block->recover_table_size;
   328     *block->lut_entry = &start_block->code;
   329     memcpy( start_block->code, block->code, block->size );
   330     xlat_old_cache_ptr = xlat_cut_block(start_block, size );
   331     if( xlat_old_cache_ptr->size == 0 ) {
   332 	xlat_old_cache_ptr = xlat_old_cache;
   333     }
   334 }
   336 /**
   337  * Similarly to the above method, promotes a block to temp space.
   338  * TODO: Try to combine these - they're nearly identical
   339  */
   340 void xlat_promote_to_temp_space( xlat_cache_block_t block )
   341 {
   342     int size = block->size;
   343     int allocation = -sizeof(struct xlat_cache_block);
   344     xlat_cache_block_t curr = xlat_temp_cache_ptr;
   345     xlat_cache_block_t start_block = curr;
   346     do {
   347 	if( curr->active == BLOCK_USED ) {
   348 	    xlat_promote_to_old_space( curr );
   349 	} else if( curr->active == BLOCK_ACTIVE ) {
   350 	    // Active but not used, release block
   351 	   *((uintptr_t *)curr->lut_entry) &= ((uintptr_t)0x03);
   352 	}
   353 	allocation += curr->size + sizeof(struct xlat_cache_block);
   354 	curr = NEXT(curr);
   355 	if( allocation > size ) {
   356 	    break; /* done */
   357 	}
   358 	if( curr->size == 0 ) { /* End-of-cache Sentinel */
   359 	    /* Leave what we just released as free space and start again from the
   360 	     * top of the cache
   361 	     */
   362 	    start_block->active = 0;
   363 	    start_block->size = allocation;
   364 	    allocation = -sizeof(struct xlat_cache_block);
   365 	    start_block = curr = xlat_temp_cache;
   366 	}
   367     } while(1);
   368     start_block->active = 1;
   369     start_block->size = allocation;
   370     start_block->lut_entry = block->lut_entry;
   371     start_block->recover_table_offset = block->recover_table_offset;
   372     start_block->recover_table_size = block->recover_table_size;
   373     *block->lut_entry = &start_block->code;
   374     memcpy( start_block->code, block->code, block->size );
   375     xlat_temp_cache_ptr = xlat_cut_block(start_block, size );
   376     if( xlat_temp_cache_ptr->size == 0 ) {
   377 	xlat_temp_cache_ptr = xlat_temp_cache;
   378     }
   380 }
   382 /**
   383  * Returns the next block in the new cache list that can be written to by the
   384  * translator. If the next block is active, it is evicted first.
   385  */
   386 xlat_cache_block_t xlat_start_block( sh4addr_t address )
   387 {
   388     if( xlat_new_cache_ptr->size == 0 ) {
   389 	xlat_new_cache_ptr = xlat_new_cache;
   390     }
   392     if( xlat_new_cache_ptr->active ) {
   393 	xlat_promote_to_temp_space( xlat_new_cache_ptr );
   394     }
   395     xlat_new_create_ptr = xlat_new_cache_ptr;
   396     xlat_new_create_ptr->active = 1;
   397     xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   399     /* Add the LUT entry for the block */
   400     if( xlat_lut[XLAT_LUT_PAGE(address)] == NULL ) {
   401 	xlat_lut[XLAT_LUT_PAGE(address)] =
   402 	    mmap( NULL, XLAT_LUT_PAGE_SIZE, PROT_READ|PROT_WRITE,
   403 		  MAP_PRIVATE|MAP_ANON, -1, 0 );
   404 	memset( xlat_lut[XLAT_LUT_PAGE(address)], 0, XLAT_LUT_PAGE_SIZE );
   405     }
   407     if( IS_ENTRY_POINT(xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)]) ) {
   408 	xlat_cache_block_t oldblock = BLOCK_FOR_CODE(xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)]);
   409 	oldblock->active = 0;
   410     }
   412     xlat_lut[XLAT_LUT_PAGE(address)][XLAT_LUT_ENTRY(address)] = 
   413 	&xlat_new_create_ptr->code;
   414     xlat_new_create_ptr->lut_entry = xlat_lut[XLAT_LUT_PAGE(address)] + XLAT_LUT_ENTRY(address);
   416     return xlat_new_create_ptr;
   417 }
   419 xlat_cache_block_t xlat_extend_block( uint32_t newSize )
   420 {
   421     while( xlat_new_create_ptr->size < newSize ) {
   422 	if( xlat_new_cache_ptr->size == 0 ) {
   423 	    /* Migrate to the front of the cache to keep it contiguous */
   424 	    xlat_new_create_ptr->active = 0;
   425 	    sh4ptr_t olddata = xlat_new_create_ptr->code;
   426 	    int oldsize = xlat_new_create_ptr->size;
   427 	    int size = oldsize + MIN_BLOCK_SIZE; /* minimum expansion */
   428 	    void **lut_entry = xlat_new_create_ptr->lut_entry;
   429 	    int allocation = -sizeof(struct xlat_cache_block);
   430 	    xlat_new_cache_ptr = xlat_new_cache;
   431 	    do {
   432 		if( xlat_new_cache_ptr->active ) {
   433 		    xlat_promote_to_temp_space( xlat_new_cache_ptr );
   434 		}
   435 		allocation += xlat_new_cache_ptr->size + sizeof(struct xlat_cache_block);
   436 		xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   437 	    } while( allocation < size );
   438 	    xlat_new_create_ptr = xlat_new_cache;
   439 	    xlat_new_create_ptr->active = 1;
   440 	    xlat_new_create_ptr->size = allocation;
   441 	    xlat_new_create_ptr->lut_entry = lut_entry;
   442 	    *lut_entry = &xlat_new_create_ptr->code;
   443 	    memmove( xlat_new_create_ptr->code, olddata, oldsize );
   444 	} else {
   445 	    if( xlat_new_cache_ptr->active ) {
   446 		xlat_promote_to_temp_space( xlat_new_cache_ptr );
   447 	    }
   448 	    xlat_new_create_ptr->size += xlat_new_cache_ptr->size + sizeof(struct xlat_cache_block);
   449 	    xlat_new_cache_ptr = NEXT(xlat_new_cache_ptr);
   450 	}
   451     }
   452     return xlat_new_create_ptr;
   454 }
   456 void xlat_commit_block( uint32_t destsize, uint32_t srcsize )
   457 {
   458     void **ptr = xlat_new_create_ptr->lut_entry;
   459     void **endptr = ptr + (srcsize>>2);
   460     while( ptr < endptr ) {
   461 	if( *ptr == NULL ) {
   462 	    *ptr = XLAT_LUT_ENTRY_USED;
   463 	}
   464 	ptr++;
   465     }
   467     xlat_new_cache_ptr = xlat_cut_block( xlat_new_create_ptr, destsize );
   468 }
   470 void xlat_delete_block( xlat_cache_block_t block ) 
   471 {
   472     block->active = 0;
   473     *block->lut_entry = NULL;
   474 }
   476 void xlat_check_cache_integrity( xlat_cache_block_t cache, xlat_cache_block_t ptr, int size )
   477 {
   478     int foundptr = 0;
   479     xlat_cache_block_t tail = 
   480 	(xlat_cache_block_t)(((char *)cache) + size - sizeof(struct xlat_cache_block));
   482     assert( tail->active == 1 );
   483     assert( tail->size == 0 ); 
   484     while( cache < tail ) {
   485 	assert( cache->active >= 0 && cache->active <= 2 );
   486 	assert( cache->size >= 0 && cache->size < size );
   487 	if( cache == ptr ) {
   488 	    foundptr = 1;
   489 	}
   490 	cache = NEXT(cache);
   491     }
   492     assert( cache == tail );
   493     assert( foundptr == 1 || tail == ptr );
   494 }
   496 void xlat_check_integrity( )
   497 {
   498     xlat_check_cache_integrity( xlat_new_cache, xlat_new_cache_ptr, XLAT_NEW_CACHE_SIZE );
   499     xlat_check_cache_integrity( xlat_temp_cache, xlat_temp_cache_ptr, XLAT_TEMP_CACHE_SIZE );
   500     xlat_check_cache_integrity( xlat_old_cache, xlat_old_cache_ptr, XLAT_OLD_CACHE_SIZE );
   501 }
.