Search
lxdream.org :: lxdream/src/sh4/mmu.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/mmu.c
changeset 1298:d0eb2307b847
prev1295:9067aff5522d
author nkeynes
date Wed May 27 09:42:24 2015 +1000 (8 years ago)
permissions -rw-r--r--
last change Fix stack alignment when calling the end-block callback (broken on OS X)
view annotate diff log raw
     1 /**
     2  * $Id$
     3  *
     4  * SH4 MMU implementation based on address space page maps. This module
     5  * is responsible for all address decoding functions. 
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    19 #define MODULE sh4_module
    21 #include <stdio.h>
    22 #include <assert.h>
    23 #include "sh4/sh4mmio.h"
    24 #include "sh4/sh4core.h"
    25 #include "sh4/sh4trans.h"
    26 #include "dreamcast.h"
    27 #include "mem.h"
    28 #include "mmu.h"
    30 /* An entry is a 1K entry if it's one of the mmu_utlb_1k_pages entries */
    31 #define IS_1K_PAGE_ENTRY(ent)  ( ((uintptr_t)(((struct utlb_1k_entry *)ent) - &mmu_utlb_1k_pages[0])) < UTLB_ENTRY_COUNT )
    33 /* Primary address space (used directly by SH4 cores) */
    34 mem_region_fn_t *sh4_address_space;
    35 mem_region_fn_t *sh4_user_address_space;
    37 /* External address space (usually the same as the global ext_address_space) */
    38 static mem_region_fn_t *sh4_ext_address_space;
    40 /* Accessed from the UTLB accessor methods */
    41 uint32_t mmu_urc;
    42 uint32_t mmu_urb;
    43 static gboolean mmu_urc_overflow; /* If true, urc was set >= urb */  
    45 /* Module globals */
    46 static struct itlb_entry mmu_itlb[ITLB_ENTRY_COUNT];
    47 static struct utlb_entry mmu_utlb[UTLB_ENTRY_COUNT];
    48 static struct utlb_page_entry mmu_utlb_pages[UTLB_ENTRY_COUNT];
    49 static uint32_t mmu_lrui;
    50 static uint32_t mmu_asid; // current asid
    51 static struct utlb_default_regions *mmu_user_storequeue_regions;
    53 /* Structures for 1K page handling */
    54 static struct utlb_1k_entry mmu_utlb_1k_pages[UTLB_ENTRY_COUNT];
    55 static int mmu_utlb_1k_free_list[UTLB_ENTRY_COUNT];
    56 static int mmu_utlb_1k_free_index;
    59 /* Function prototypes */
    60 static void mmu_invalidate_tlb();
    61 static void mmu_utlb_register_all();
    62 static void mmu_utlb_remove_entry(int);
    63 static void mmu_utlb_insert_entry(int);
    64 static void mmu_register_mem_region( uint32_t start, uint32_t end, mem_region_fn_t fn );
    65 static void mmu_register_user_mem_region( uint32_t start, uint32_t end, mem_region_fn_t fn );
    66 static void mmu_set_tlb_enabled( int tlb_on );
    67 static void mmu_set_tlb_asid( uint32_t asid );
    68 static void mmu_set_storequeue_protected( int protected, int tlb_on );
    69 static gboolean mmu_utlb_map_pages( mem_region_fn_t priv_page, mem_region_fn_t user_page, sh4addr_t start_addr, int npages );
    70 static void mmu_utlb_remap_pages( gboolean remap_priv, gboolean remap_user, int entryNo );
    71 static gboolean mmu_utlb_unmap_pages( gboolean unmap_priv, gboolean unmap_user, sh4addr_t start_addr, int npages );
    72 static gboolean mmu_ext_page_remapped( sh4addr_t page, mem_region_fn_t fn, void *user_data );
    73 static void mmu_utlb_1k_init();
    74 static struct utlb_1k_entry *mmu_utlb_1k_alloc();
    75 static void mmu_utlb_1k_free( struct utlb_1k_entry *entry );
    76 static int mmu_read_urc();
    78 static void FASTCALL tlb_miss_read( sh4addr_t addr, void *exc );
    79 static int32_t FASTCALL tlb_protected_read( sh4addr_t addr, void *exc );
    80 static void FASTCALL tlb_protected_write( sh4addr_t addr, uint32_t val, void *exc );
    81 static int32_t FASTCALL tlb_protected_read_for_write( sh4addr_t addr, void *exc );
    82 static void FASTCALL tlb_initial_write( sh4addr_t addr, uint32_t val, void *exc );
    83 static int32_t FASTCALL tlb_initial_read_for_write( sh4addr_t addr, void *exc );
    84 static uint32_t get_tlb_size_mask( uint32_t flags );
    85 static uint32_t get_tlb_size_pages( uint32_t flags );
    87 #define DEFAULT_REGIONS 0
    88 #define DEFAULT_STOREQUEUE_REGIONS 1
    89 #define DEFAULT_STOREQUEUE_SQMD_REGIONS 2
    91 static struct utlb_default_regions mmu_default_regions[3] = {
    92         { &mem_region_tlb_miss, &mem_region_tlb_protected, &mem_region_tlb_multihit },
    93         { &p4_region_storequeue_miss, &p4_region_storequeue_protected, &p4_region_storequeue_multihit },
    94         { &p4_region_storequeue_sqmd_miss, &p4_region_storequeue_sqmd_protected, &p4_region_storequeue_sqmd_multihit } };
    96 #define IS_STOREQUEUE_PROTECTED() (mmu_user_storequeue_regions == &mmu_default_regions[DEFAULT_STOREQUEUE_SQMD_REGIONS])
    98 #ifndef SH4_TRANSLATOR
    99 /* Dummy MMU vtable functions */
   100 void mmu_utlb_init_vtable( struct utlb_entry *ent, struct utlb_page_entry *page, gboolean writable )
   101 {
   102 }
   103 void mmu_utlb_init_storequeue_vtable( struct utlb_entry *ent, struct utlb_page_entry *page )
   104 {
   105 }
   106 void mmu_utlb_1k_init_vtable( struct utlb_1k_entry *entry )
   107 {
   108 }
   109 #endif
   111 /*********************** Module public functions ****************************/
   113 /**
   114  * Allocate memory for the address space maps, and initialize them according
   115  * to the default (reset) values. (TLB is disabled by default)
   116  */
   118 void MMU_init()
   119 {
   120     sh4_ext_address_space = ext_address_space;
   121     sh4_address_space = mem_alloc_pages( sizeof(mem_region_fn_t) * 256 );
   122     sh4_user_address_space = mem_alloc_pages( sizeof(mem_region_fn_t) * 256 );
   123     mmu_user_storequeue_regions = &mmu_default_regions[DEFAULT_STOREQUEUE_REGIONS];
   125     mmu_set_tlb_enabled(0);
   126     mmu_register_user_mem_region( 0x80000000, 0x00000000, &mem_region_address_error );
   127     mmu_register_user_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue );                                
   129     /* Setup P4 tlb/cache access regions */
   130     mmu_register_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue );
   131     mmu_register_mem_region( 0xE4000000, 0xF0000000, &mem_region_unmapped );
   132     mmu_register_mem_region( 0xF0000000, 0xF1000000, &p4_region_icache_addr );
   133     mmu_register_mem_region( 0xF1000000, 0xF2000000, &p4_region_icache_data );
   134     mmu_register_mem_region( 0xF2000000, 0xF3000000, &p4_region_itlb_addr );
   135     mmu_register_mem_region( 0xF3000000, 0xF4000000, &p4_region_itlb_data );
   136     mmu_register_mem_region( 0xF4000000, 0xF5000000, &p4_region_ocache_addr );
   137     mmu_register_mem_region( 0xF5000000, 0xF6000000, &p4_region_ocache_data );
   138     mmu_register_mem_region( 0xF6000000, 0xF7000000, &p4_region_utlb_addr );
   139     mmu_register_mem_region( 0xF7000000, 0xF8000000, &p4_region_utlb_data );
   140     mmu_register_mem_region( 0xF8000000, 0x00000000, &mem_region_unmapped );
   142     /* Setup P4 control region */
   143     mmu_register_mem_region( 0xFF000000, 0xFF001000, &mmio_region_MMU.fn );
   144     mmu_register_mem_region( 0xFF100000, 0xFF101000, &mmio_region_PMM.fn );
   145     mmu_register_mem_region( 0xFF200000, 0xFF201000, &mmio_region_UBC.fn );
   146     mmu_register_mem_region( 0xFF800000, 0xFF801000, &mmio_region_BSC.fn );
   147     mmu_register_mem_region( 0xFF900000, 0xFFA00000, &mem_region_unmapped ); // SDMR2 + SDMR3
   148     mmu_register_mem_region( 0xFFA00000, 0xFFA01000, &mmio_region_DMAC.fn );
   149     mmu_register_mem_region( 0xFFC00000, 0xFFC01000, &mmio_region_CPG.fn );
   150     mmu_register_mem_region( 0xFFC80000, 0xFFC81000, &mmio_region_RTC.fn );
   151     mmu_register_mem_region( 0xFFD00000, 0xFFD01000, &mmio_region_INTC.fn );
   152     mmu_register_mem_region( 0xFFD80000, 0xFFD81000, &mmio_region_TMU.fn );
   153     mmu_register_mem_region( 0xFFE00000, 0xFFE01000, &mmio_region_SCI.fn );
   154     mmu_register_mem_region( 0xFFE80000, 0xFFE81000, &mmio_region_SCIF.fn );
   155     mmu_register_mem_region( 0xFFF00000, 0xFFF01000, &mem_region_unmapped ); // H-UDI
   157     register_mem_page_remapped_hook( mmu_ext_page_remapped, NULL );
   158     mmu_utlb_1k_init();
   160     /* Ensure the code regions are executable. Although it might
   161      * be more portable to mmap these at runtime rather than using static decls
   162      */
   163     mem_unprotect( mmu_utlb_pages, sizeof(mmu_utlb_pages) );
   164     mem_unprotect( mmu_utlb_1k_pages, sizeof(mmu_utlb_1k_pages) );
   165 }
   167 void MMU_reset()
   168 {
   169     mmio_region_MMU_write( CCR, 0 );
   170     mmio_region_MMU_write( MMUCR, 0 );
   171 }
   173 void MMU_save_state( FILE *f )
   174 {
   175     mmu_read_urc();   
   176     fwrite( &mmu_itlb, sizeof(mmu_itlb), 1, f );
   177     fwrite( &mmu_utlb, sizeof(mmu_utlb), 1, f );
   178     fwrite( &mmu_urc, sizeof(mmu_urc), 1, f );
   179     fwrite( &mmu_urb, sizeof(mmu_urb), 1, f );
   180     fwrite( &mmu_lrui, sizeof(mmu_lrui), 1, f );
   181     fwrite( &mmu_asid, sizeof(mmu_asid), 1, f );
   182 }
   184 int MMU_load_state( FILE *f )
   185 {
   186     if( fread( &mmu_itlb, sizeof(mmu_itlb), 1, f ) != 1 ) {
   187         return 1;
   188     }
   189     if( fread( &mmu_utlb, sizeof(mmu_utlb), 1, f ) != 1 ) {
   190         return 1;
   191     }
   192     if( fread( &mmu_urc, sizeof(mmu_urc), 1, f ) != 1 ) {
   193         return 1;
   194     }
   195     if( fread( &mmu_urc, sizeof(mmu_urb), 1, f ) != 1 ) {
   196         return 1;
   197     }
   198     if( fread( &mmu_lrui, sizeof(mmu_lrui), 1, f ) != 1 ) {
   199         return 1;
   200     }
   201     if( fread( &mmu_asid, sizeof(mmu_asid), 1, f ) != 1 ) {
   202         return 1;
   203     }
   205     uint32_t mmucr = MMIO_READ(MMU,MMUCR);
   206     mmu_urc_overflow = mmu_urc >= mmu_urb;
   207     mmu_set_tlb_enabled(mmucr&MMUCR_AT);
   208     mmu_set_storequeue_protected(mmucr&MMUCR_SQMD, mmucr&MMUCR_AT);
   209     return 0;
   210 }
   212 /**
   213  * LDTLB instruction implementation. Copies PTEH, PTEL and PTEA into the UTLB
   214  * entry identified by MMUCR.URC. Does not modify MMUCR or the ITLB.
   215  */
   216 void MMU_ldtlb()
   217 {
   218     int urc = mmu_read_urc();
   219     if( IS_TLB_ENABLED() && mmu_utlb[urc].flags & TLB_VALID )
   220         mmu_utlb_remove_entry( urc );
   221     mmu_utlb[urc].vpn = MMIO_READ(MMU, PTEH) & 0xFFFFFC00;
   222     mmu_utlb[urc].asid = MMIO_READ(MMU, PTEH) & 0x000000FF;
   223     mmu_utlb[urc].ppn = MMIO_READ(MMU, PTEL) & 0x1FFFFC00;
   224     mmu_utlb[urc].flags = MMIO_READ(MMU, PTEL) & 0x00001FF;
   225     mmu_utlb[urc].pcmcia = MMIO_READ(MMU, PTEA);
   226     mmu_utlb[urc].mask = get_tlb_size_mask(mmu_utlb[urc].flags);
   227     if( IS_TLB_ENABLED() && mmu_utlb[urc].flags & TLB_VALID )
   228         mmu_utlb_insert_entry( urc );
   229 }
   232 MMIO_REGION_READ_FN( MMU, reg )
   233 {
   234     reg &= 0xFFF;
   235     switch( reg ) {
   236     case MMUCR:
   237         return MMIO_READ( MMU, MMUCR) | (mmu_read_urc()<<10) | ((mmu_urb&0x3F)<<18) | (mmu_lrui<<26);
   238     default:
   239         return MMIO_READ( MMU, reg );
   240     }
   241 }
   243 MMIO_REGION_READ_DEFSUBFNS(MMU)
   245 MMIO_REGION_WRITE_FN( MMU, reg, val )
   246 {
   247     uint32_t tmp;
   248     reg &= 0xFFF;
   249     switch(reg) {
   250     case SH4VER:
   251         return;
   252     case PTEH:
   253         val &= 0xFFFFFCFF;
   254         if( (val & 0xFF) != mmu_asid ) {
   255             mmu_set_tlb_asid( val&0xFF );
   256         }
   257         break;
   258     case PTEL:
   259         val &= 0x1FFFFDFF;
   260         break;
   261     case PTEA:
   262         val &= 0x0000000F;
   263         break;
   264     case TRA:
   265         val &= 0x000003FC;
   266         break;
   267     case EXPEVT:
   268     case INTEVT:
   269         val &= 0x00000FFF;
   270         break;
   271     case MMUCR:
   272         if( val & MMUCR_TI ) {
   273             mmu_invalidate_tlb();
   274         }
   275         mmu_urc = (val >> 10) & 0x3F;
   276         mmu_urb = (val >> 18) & 0x3F;
   277         if( mmu_urb == 0 ) {
   278             mmu_urb = 0x40;
   279         } else if( mmu_urc >= mmu_urb ) {
   280             mmu_urc_overflow = TRUE;
   281         }
   282         mmu_lrui = (val >> 26) & 0x3F;
   283         val &= 0x00000301;
   284         tmp = MMIO_READ( MMU, MMUCR );
   285         if( (val ^ tmp) & (MMUCR_SQMD) ) {
   286             mmu_set_storequeue_protected( val & MMUCR_SQMD, val&MMUCR_AT );
   287         }
   288         if( (val ^ tmp) & (MMUCR_AT) ) {
   289             // AT flag has changed state - flush the xlt cache as all bets
   290             // are off now. We also need to force an immediate exit from the
   291             // current block
   292             mmu_set_tlb_enabled( val & MMUCR_AT );
   293             MMIO_WRITE( MMU, MMUCR, val );
   294             sh4_core_exit( CORE_EXIT_FLUSH_ICACHE );
   295             xlat_flush_cache(); // If we're not running, flush the cache anyway
   296         }
   297         break;
   298     case CCR:
   299         CCN_set_cache_control( val );
   300         val &= 0x81A7;
   301         break;
   302     case MMUUNK1:
   303         /* Note that if the high bit is set, this appears to reset the machine.
   304          * Not emulating this behaviour yet until we know why...
   305          */
   306         val &= 0x00010007;
   307         break;
   308     case QACR0:
   309     case QACR1:
   310         val &= 0x0000001C;
   311         break;
   312     case PMCR1:
   313         PMM_write_control(0, val);
   314         val &= 0x0000C13F;
   315         break;
   316     case PMCR2:
   317         PMM_write_control(1, val);
   318         val &= 0x0000C13F;
   319         break;
   320     default:
   321         break;
   322     }
   323     MMIO_WRITE( MMU, reg, val );
   324 }
   326 /********************** 1K Page handling ***********************/
   327 /* Since we use 4K pages as our native page size, 1K pages need a bit of extra
   328  * effort to manage - we justify this on the basis that most programs won't
   329  * actually use 1K pages, so we may as well optimize for the common case.
   330  * 
   331  * Implementation uses an intermediate page entry (the utlb_1k_entry) that
   332  * redirects requests to the 'real' page entry. These are allocated on an
   333  * as-needed basis, and returned to the pool when all subpages are empty.
   334  */ 
   335 static void mmu_utlb_1k_init()
   336 {
   337     int i;
   338     for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   339         mmu_utlb_1k_free_list[i] = i;
   340         mmu_utlb_1k_init_vtable( &mmu_utlb_1k_pages[i] );
   341     }
   342     mmu_utlb_1k_free_index = 0;
   343 }
   345 static struct utlb_1k_entry *mmu_utlb_1k_alloc()
   346 {
   347     assert( mmu_utlb_1k_free_index < UTLB_ENTRY_COUNT );
   348     struct utlb_1k_entry *entry = &mmu_utlb_1k_pages[mmu_utlb_1k_free_list[mmu_utlb_1k_free_index++]];
   349     return entry;
   350 }    
   352 static void mmu_utlb_1k_free( struct utlb_1k_entry *ent )
   353 {
   354     unsigned int entryNo = ent - &mmu_utlb_1k_pages[0];
   355     assert( entryNo < UTLB_ENTRY_COUNT );
   356     assert( mmu_utlb_1k_free_index > 0 );
   357     mmu_utlb_1k_free_list[--mmu_utlb_1k_free_index] = entryNo;
   358 }
   361 /********************** Address space maintenance *************************/
   363 mem_region_fn_t *mmu_set_ext_address_space( mem_region_fn_t *ext )
   364 {
   365     mem_region_fn_t *old_ext = sh4_ext_address_space;
   366     sh4_ext_address_space = ext;
   367     mmu_set_tlb_enabled(IS_TLB_ENABLED());
   368     return old_ext;
   369 }
   371 /**
   372  * MMU accessor functions just increment URC - fixup here if necessary
   373  */
   374 static int mmu_read_urc()
   375 {
   376     if( mmu_urc_overflow ) {
   377         if( mmu_urc >= 0x40 ) {
   378             mmu_urc_overflow = FALSE;
   379             mmu_urc -= 0x40;
   380             mmu_urc %= mmu_urb;
   381         }
   382     } else {
   383         mmu_urc %= mmu_urb;
   384     }
   385     return mmu_urc;
   386 }
   388 static void mmu_register_mem_region( uint32_t start, uint32_t end, mem_region_fn_t fn )
   389 {
   390     int count = (end - start) >> 12;
   391     mem_region_fn_t *ptr = &sh4_address_space[start>>12];
   392     while( count-- > 0 ) {
   393         *ptr++ = fn;
   394     }
   395 }
   396 static void mmu_register_user_mem_region( uint32_t start, uint32_t end, mem_region_fn_t fn )
   397 {
   398     int count = (end - start) >> 12;
   399     mem_region_fn_t *ptr = &sh4_user_address_space[start>>12];
   400     while( count-- > 0 ) {
   401         *ptr++ = fn;
   402     }
   403 }
   405 static gboolean mmu_ext_page_remapped( sh4addr_t page, mem_region_fn_t fn, void *user_data )
   406 {
   407     unsigned int i;
   408     if( (MMIO_READ(MMU,MMUCR)) & MMUCR_AT ) {
   409         /* TLB on */
   410         sh4_address_space[(page|0x80000000)>>12] = fn; /* Direct map to P1 and P2 */
   411         sh4_address_space[(page|0xA0000000)>>12] = fn;
   412         /* Scan UTLB and update any direct-referencing entries */
   413     } else {
   414         /* Direct map to U0, P0, P1, P2, P3 */
   415         for( i=0; i<= 0xC0000000; i+= 0x20000000 ) {
   416             sh4_address_space[(page|i)>>12] = fn;
   417         }
   418         for( i=0; i < 0x80000000; i+= 0x20000000 ) {
   419             sh4_user_address_space[(page|i)>>12] = fn;
   420         }
   421     }
   422     return TRUE;
   423 }
   425 static void mmu_set_tlb_enabled( int tlb_on )
   426 {
   427     mem_region_fn_t *ptr;
   428     int i;
   430     /* Reset the storequeue area */
   432     if( tlb_on ) {
   433         mmu_register_mem_region(0x00000000, 0x80000000, &mem_region_tlb_miss );
   434         mmu_register_mem_region(0xC0000000, 0xE0000000, &mem_region_tlb_miss );
   435         mmu_register_user_mem_region(0x00000000, 0x80000000, &mem_region_tlb_miss );
   437         /* Default SQ prefetch goes to TLB miss (?) */
   438         mmu_register_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue_miss );
   439         mmu_register_user_mem_region( 0xE0000000, 0xE4000000, mmu_user_storequeue_regions->tlb_miss );
   440         mmu_utlb_register_all();
   441     } else {
   442         for( i=0, ptr = sh4_address_space; i<7; i++, ptr += LXDREAM_PAGE_TABLE_ENTRIES ) {
   443             memcpy( ptr, sh4_ext_address_space, sizeof(mem_region_fn_t) * LXDREAM_PAGE_TABLE_ENTRIES );
   444         }
   445         for( i=0, ptr = sh4_user_address_space; i<4; i++, ptr += LXDREAM_PAGE_TABLE_ENTRIES ) {
   446             memcpy( ptr, sh4_ext_address_space, sizeof(mem_region_fn_t) * LXDREAM_PAGE_TABLE_ENTRIES );
   447         }
   449         mmu_register_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue );
   450         if( IS_STOREQUEUE_PROTECTED() ) {
   451             mmu_register_user_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue_sqmd );
   452         } else {
   453             mmu_register_user_mem_region( 0xE0000000, 0xE4000000, &p4_region_storequeue );
   454         }
   455     }
   457 }
   459 /**
   460  * Flip the SQMD switch - this is rather expensive, so will need to be changed if
   461  * anything expects to do this frequently.
   462  */
   463 static void mmu_set_storequeue_protected( int protected, int tlb_on ) 
   464 {
   465     mem_region_fn_t nontlb_region;
   466     int i;
   468     if( protected ) {
   469         mmu_user_storequeue_regions = &mmu_default_regions[DEFAULT_STOREQUEUE_SQMD_REGIONS];
   470         nontlb_region = &p4_region_storequeue_sqmd;
   471     } else {
   472         mmu_user_storequeue_regions = &mmu_default_regions[DEFAULT_STOREQUEUE_REGIONS];
   473         nontlb_region = &p4_region_storequeue; 
   474     }
   476     if( tlb_on ) {
   477         mmu_register_user_mem_region( 0xE0000000, 0xE4000000, mmu_user_storequeue_regions->tlb_miss );
   478         for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   479             if( (mmu_utlb[i].vpn & 0xFC000000) == 0xE0000000 ) {
   480                 mmu_utlb_insert_entry(i);
   481             }
   482         }
   483     } else {
   484         mmu_register_user_mem_region( 0xE0000000, 0xE4000000, nontlb_region ); 
   485     }
   487 }
   489 static void mmu_set_tlb_asid( uint32_t asid )
   490 {
   491     if( IS_TLB_ENABLED() ) {
   492         /* Scan for pages that need to be remapped */
   493         int i;
   494         if( IS_SV_ENABLED() ) {
   495             for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   496                 if( mmu_utlb[i].asid == mmu_asid &&
   497                         (mmu_utlb[i].flags & (TLB_VALID|TLB_SHARE)) == (TLB_VALID) ) {
   498                     // Matches old ASID - unmap out
   499                     if( !mmu_utlb_unmap_pages( FALSE, TRUE, mmu_utlb[i].vpn&mmu_utlb[i].mask,
   500                             get_tlb_size_pages(mmu_utlb[i].flags) ) )
   501                         mmu_utlb_remap_pages( FALSE, TRUE, i );
   502                 }
   503             }
   504             for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   505                 if( mmu_utlb[i].asid == asid &&
   506                         (mmu_utlb[i].flags & (TLB_VALID|TLB_SHARE)) == (TLB_VALID) ) {
   507                     // Matches new ASID - map in
   508                     mmu_utlb_map_pages( NULL, mmu_utlb_pages[i].user_fn,
   509                             mmu_utlb[i].vpn&mmu_utlb[i].mask,
   510                             get_tlb_size_pages(mmu_utlb[i].flags) );
   511                 }
   512             }
   513         } else {
   514             // Remap both Priv+user pages
   515             for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   516                 if( mmu_utlb[i].asid == mmu_asid &&
   517                         (mmu_utlb[i].flags & (TLB_VALID|TLB_SHARE)) == (TLB_VALID) ) {
   518                     if( !mmu_utlb_unmap_pages( TRUE, TRUE, mmu_utlb[i].vpn&mmu_utlb[i].mask,
   519                             get_tlb_size_pages(mmu_utlb[i].flags) ) )
   520                         mmu_utlb_remap_pages( TRUE, TRUE, i );
   521                 }
   522             }
   523             for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   524                 if( mmu_utlb[i].asid == asid &&
   525                         (mmu_utlb[i].flags & (TLB_VALID|TLB_SHARE)) == (TLB_VALID) ) {
   526                     mmu_utlb_map_pages( &mmu_utlb_pages[i].fn, mmu_utlb_pages[i].user_fn,
   527                             mmu_utlb[i].vpn&mmu_utlb[i].mask,
   528                             get_tlb_size_pages(mmu_utlb[i].flags) );
   529                 }
   530             }
   531         }
   532         sh4_icache.page_vma = -1; // invalidate icache as asid has changed
   533     }
   534     mmu_asid = asid;
   535 }
   537 static uint32_t get_tlb_size_mask( uint32_t flags )
   538 {
   539     switch( flags & TLB_SIZE_MASK ) {
   540     case TLB_SIZE_1K: return MASK_1K;
   541     case TLB_SIZE_4K: return MASK_4K;
   542     case TLB_SIZE_64K: return MASK_64K;
   543     case TLB_SIZE_1M: return MASK_1M;
   544     default: return 0; /* Unreachable */
   545     }
   546 }
   547 static uint32_t get_tlb_size_pages( uint32_t flags )
   548 {
   549     switch( flags & TLB_SIZE_MASK ) {
   550     case TLB_SIZE_1K: return 0;
   551     case TLB_SIZE_4K: return 1;
   552     case TLB_SIZE_64K: return 16;
   553     case TLB_SIZE_1M: return 256;
   554     default: return 0; /* Unreachable */
   555     }
   556 }
   558 /**
   559  * Add a new TLB entry mapping to the address space table. If any of the pages
   560  * are already mapped, they are mapped to the TLB multi-hit page instead.
   561  * @return FALSE if a TLB multihit situation was detected, otherwise TRUE.
   562  */ 
   563 static gboolean mmu_utlb_map_pages( mem_region_fn_t priv_page, mem_region_fn_t user_page, sh4addr_t start_addr, int npages )
   564 {
   565     mem_region_fn_t *ptr = &sh4_address_space[start_addr >> 12];
   566     mem_region_fn_t *uptr = &sh4_user_address_space[start_addr >> 12];
   567     struct utlb_default_regions *privdefs = &mmu_default_regions[DEFAULT_REGIONS];
   568     struct utlb_default_regions *userdefs = privdefs;    
   570     gboolean mapping_ok = TRUE;
   571     int i;
   573     if( (start_addr & 0xFC000000) == 0xE0000000 ) {
   574         /* Storequeue mapping */
   575         privdefs = &mmu_default_regions[DEFAULT_STOREQUEUE_REGIONS];
   576         userdefs = mmu_user_storequeue_regions;
   577     } else if( (start_addr & 0xE0000000) == 0xC0000000 ) {
   578         user_page = NULL; /* No user access to P3 region */
   579     } else if( start_addr >= 0x80000000 ) {
   580         return TRUE; // No mapping - legal but meaningless
   581     }
   583     if( npages == 0 ) {
   584         struct utlb_1k_entry *ent;
   585         int i, idx = (start_addr >> 10) & 0x03;
   586         if( IS_1K_PAGE_ENTRY(*ptr) ) {
   587             ent = (struct utlb_1k_entry *)*ptr;
   588         } else {
   589             ent = mmu_utlb_1k_alloc();
   590             /* New 1K struct - init to previous contents of region */
   591             for( i=0; i<4; i++ ) {
   592                 ent->subpages[i] = *ptr;
   593                 ent->user_subpages[i] = *uptr;
   594             }
   595             *ptr = &ent->fn;
   596             *uptr = &ent->user_fn;
   597         }
   599         if( priv_page != NULL ) {
   600             if( ent->subpages[idx] == privdefs->tlb_miss ) {
   601                 ent->subpages[idx] = priv_page;
   602             } else {
   603                 mapping_ok = FALSE;
   604                 ent->subpages[idx] = privdefs->tlb_multihit;
   605             }
   606         }
   607         if( user_page != NULL ) {
   608             if( ent->user_subpages[idx] == userdefs->tlb_miss ) {
   609                 ent->user_subpages[idx] = user_page;
   610             } else {
   611                 mapping_ok = FALSE;
   612                 ent->user_subpages[idx] = userdefs->tlb_multihit;
   613             }
   614         }
   616     } else {
   617         if( priv_page != NULL ) {
   618             /* Privileged mapping only */
   619             for( i=0; i<npages; i++ ) {
   620                 if( *ptr == privdefs->tlb_miss ) {
   621                     *ptr++ = priv_page;
   622                 } else {
   623                     mapping_ok = FALSE;
   624                     *ptr++ = privdefs->tlb_multihit;
   625                 }
   626             }
   627         }
   628         if( user_page != NULL ) {
   629             /* User mapping only (eg ASID change remap w/ SV=1) */
   630             for( i=0; i<npages; i++ ) {
   631                 if( *uptr == userdefs->tlb_miss ) {
   632                     *uptr++ = user_page;
   633                 } else {
   634                     mapping_ok = FALSE;
   635                     *uptr++ = userdefs->tlb_multihit;
   636                 }
   637             }        
   638         }
   639     }
   641     return mapping_ok;
   642 }
   644 /**
   645  * Remap any pages within the region covered by entryNo, but not including 
   646  * entryNo itself. This is used to reestablish pages that were previously
   647  * covered by a multi-hit exception region when one of the pages is removed.
   648  */
   649 static void mmu_utlb_remap_pages( gboolean remap_priv, gboolean remap_user, int entryNo )
   650 {
   651     int mask = mmu_utlb[entryNo].mask;
   652     uint32_t remap_addr = mmu_utlb[entryNo].vpn & mask;
   653     int i;
   655     for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   656         if( i != entryNo && (mmu_utlb[i].vpn & mask) == remap_addr && (mmu_utlb[i].flags & TLB_VALID) ) {
   657             /* Overlapping region */
   658             mem_region_fn_t priv_page = (remap_priv ? &mmu_utlb_pages[i].fn : NULL);
   659             mem_region_fn_t user_page = (remap_priv ? mmu_utlb_pages[i].user_fn : NULL);
   660             uint32_t start_addr;
   661             int npages;
   663             if( mmu_utlb[i].mask >= mask ) {
   664                 /* entry is no larger than the area we're replacing - map completely */
   665                 start_addr = mmu_utlb[i].vpn & mmu_utlb[i].mask;
   666                 npages = get_tlb_size_pages( mmu_utlb[i].flags );
   667             } else {
   668                 /* Otherwise map subset - region covered by removed page */
   669                 start_addr = remap_addr;
   670                 npages = get_tlb_size_pages( mmu_utlb[entryNo].flags );
   671             }
   673             if( (mmu_utlb[i].flags & TLB_SHARE) || mmu_utlb[i].asid == mmu_asid ) { 
   674                 mmu_utlb_map_pages( priv_page, user_page, start_addr, npages );
   675             } else if( IS_SV_ENABLED() ) {
   676                 mmu_utlb_map_pages( priv_page, NULL, start_addr, npages );
   677             }
   679         }
   680     }
   681 }
   683 /**
   684  * Remove a previous TLB mapping (replacing them with the TLB miss region).
   685  * @return FALSE if any pages were previously mapped to the TLB multihit page, 
   686  * otherwise TRUE. In either case, all pages in the region are cleared to TLB miss.
   687  */
   688 static gboolean mmu_utlb_unmap_pages( gboolean unmap_priv, gboolean unmap_user, sh4addr_t start_addr, int npages )
   689 {
   690     mem_region_fn_t *ptr = &sh4_address_space[start_addr >> 12];
   691     mem_region_fn_t *uptr = &sh4_user_address_space[start_addr >> 12];
   692     struct utlb_default_regions *privdefs = &mmu_default_regions[DEFAULT_REGIONS];
   693     struct utlb_default_regions *userdefs = privdefs;
   695     gboolean unmapping_ok = TRUE;
   696     int i;
   698     if( (start_addr & 0xFC000000) == 0xE0000000 ) {
   699         /* Storequeue mapping */
   700         privdefs = &mmu_default_regions[DEFAULT_STOREQUEUE_REGIONS];
   701         userdefs = mmu_user_storequeue_regions;
   702     } else if( (start_addr & 0xE0000000) == 0xC0000000 ) {
   703         unmap_user = FALSE;
   704     } else if( start_addr >= 0x80000000 ) {
   705         return TRUE; // No mapping - legal but meaningless
   706     }
   708     if( npages == 0 ) { // 1K page
   709         assert( IS_1K_PAGE_ENTRY( *ptr ) );
   710         struct utlb_1k_entry *ent = (struct utlb_1k_entry *)*ptr;
   711         int i, idx = (start_addr >> 10) & 0x03, mergeable=1;
   712         if( ent->subpages[idx] == privdefs->tlb_multihit ) {
   713             unmapping_ok = FALSE;
   714         }
   715         if( unmap_priv )
   716             ent->subpages[idx] = privdefs->tlb_miss;
   717         if( unmap_user )
   718             ent->user_subpages[idx] = userdefs->tlb_miss;
   720         /* If all 4 subpages have the same content, merge them together and
   721          * release the 1K entry
   722          */
   723         mem_region_fn_t priv_page = ent->subpages[0];
   724         mem_region_fn_t user_page = ent->user_subpages[0];
   725         for( i=1; i<4; i++ ) {
   726             if( priv_page != ent->subpages[i] || user_page != ent->user_subpages[i] ) {
   727                 mergeable = 0;
   728                 break;
   729             }
   730         }
   731         if( mergeable ) {
   732             mmu_utlb_1k_free(ent);
   733             *ptr = priv_page;
   734             *uptr = user_page;
   735         }
   736     } else {
   737         if( unmap_priv ) {
   738             /* Privileged (un)mapping */
   739             for( i=0; i<npages; i++ ) {
   740                 if( *ptr == privdefs->tlb_multihit ) {
   741                     unmapping_ok = FALSE;
   742                 }
   743                 *ptr++ = privdefs->tlb_miss;
   744             }
   745         }
   746         if( unmap_user ) {
   747             /* User (un)mapping */
   748             for( i=0; i<npages; i++ ) {
   749                 if( *uptr == userdefs->tlb_multihit ) {
   750                     unmapping_ok = FALSE;
   751                 }
   752                 *uptr++ = userdefs->tlb_miss;
   753             }            
   754         }
   755     }
   757     return unmapping_ok;
   758 }
   760 static void mmu_utlb_insert_entry( int entry )
   761 {
   762     struct utlb_entry *ent = &mmu_utlb[entry];
   763     mem_region_fn_t page = &mmu_utlb_pages[entry].fn;
   764     mem_region_fn_t upage;
   765     sh4addr_t start_addr = ent->vpn & ent->mask;
   766     int npages = get_tlb_size_pages(ent->flags);
   768     if( (start_addr & 0xFC000000) == 0xE0000000 ) {
   769         /* Store queue mappings are a bit different - normal access is fixed to
   770          * the store queue register block, and we only map prefetches through
   771          * the TLB 
   772          */
   773         mmu_utlb_init_storequeue_vtable( ent, &mmu_utlb_pages[entry] );
   775         if( (ent->flags & TLB_USERMODE) == 0 ) {
   776             upage = mmu_user_storequeue_regions->tlb_prot;
   777         } else if( IS_STOREQUEUE_PROTECTED() ) {
   778             upage = &p4_region_storequeue_sqmd;
   779         } else {
   780             upage = page;
   781         }
   783     }  else {
   785         if( (ent->flags & TLB_USERMODE) == 0 ) {
   786             upage = &mem_region_tlb_protected;
   787         } else {        
   788             upage = page;
   789         }
   791         if( (ent->flags & TLB_WRITABLE) == 0 ) {
   792             page->write_long = (mem_write_fn_t)tlb_protected_write;
   793             page->write_word = (mem_write_fn_t)tlb_protected_write;
   794             page->write_byte = (mem_write_fn_t)tlb_protected_write;
   795             page->write_burst = (mem_write_burst_fn_t)tlb_protected_write;
   796             page->read_byte_for_write = (mem_read_fn_t)tlb_protected_read_for_write;
   797             mmu_utlb_init_vtable( ent, &mmu_utlb_pages[entry], FALSE );
   798         } else if( (ent->flags & TLB_DIRTY) == 0 ) {
   799             page->write_long = (mem_write_fn_t)tlb_initial_write;
   800             page->write_word = (mem_write_fn_t)tlb_initial_write;
   801             page->write_byte = (mem_write_fn_t)tlb_initial_write;
   802             page->write_burst = (mem_write_burst_fn_t)tlb_initial_write;
   803             page->read_byte_for_write = (mem_read_fn_t)tlb_initial_read_for_write;
   804             mmu_utlb_init_vtable( ent, &mmu_utlb_pages[entry], FALSE );
   805         } else {
   806             mmu_utlb_init_vtable( ent, &mmu_utlb_pages[entry], TRUE );
   807         }
   808     }
   810     mmu_utlb_pages[entry].user_fn = upage;
   812     /* Is page visible? */
   813     if( (ent->flags & TLB_SHARE) || ent->asid == mmu_asid ) { 
   814         mmu_utlb_map_pages( page, upage, start_addr, npages );
   815     } else if( IS_SV_ENABLED() ) {
   816         mmu_utlb_map_pages( page, NULL, start_addr, npages );
   817     }
   818 }
   820 static void mmu_utlb_remove_entry( int entry )
   821 {
   822     struct utlb_entry *ent = &mmu_utlb[entry];
   823     sh4addr_t start_addr = ent->vpn&ent->mask;
   824     gboolean unmap_user;
   825     int npages = get_tlb_size_pages(ent->flags);
   827     if( (ent->flags & TLB_SHARE) || ent->asid == mmu_asid ) {
   828         unmap_user = TRUE;
   829     } else if( IS_SV_ENABLED() ) {
   830         unmap_user = FALSE;
   831     } else {
   832         return; // Not mapped
   833     }
   835     gboolean clean_unmap = mmu_utlb_unmap_pages( TRUE, unmap_user, start_addr, npages );
   837     if( !clean_unmap ) {
   838         mmu_utlb_remap_pages( TRUE, unmap_user, entry );
   839     }
   840 }
   842 static void mmu_utlb_register_all()
   843 {
   844     int i;
   845     for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   846         if( mmu_utlb[i].flags & TLB_VALID ) 
   847             mmu_utlb_insert_entry( i );
   848     }
   849 }
   851 static void mmu_invalidate_tlb()
   852 {
   853     int i;
   854     for( i=0; i<ITLB_ENTRY_COUNT; i++ ) {
   855         mmu_itlb[i].flags &= (~TLB_VALID);
   856     }
   857     if( IS_TLB_ENABLED() ) {
   858         for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   859             if( mmu_utlb[i].flags & TLB_VALID ) {
   860                 mmu_utlb_remove_entry( i );
   861             }
   862         }
   863     }
   864     for( i=0; i<UTLB_ENTRY_COUNT; i++ ) {
   865         mmu_utlb[i].flags &= (~TLB_VALID);
   866     }
   867 }
   869 /******************************************************************************/
   870 /*                        MMU TLB address translation                         */
   871 /******************************************************************************/
   873 /**
   874  * Translate a 32-bit address into a UTLB entry number. Does not check for
   875  * page protection etc.
   876  * @return the entryNo if found, -1 if not found, and -2 for a multi-hit.
   877  */
   878 int mmu_utlb_entry_for_vpn( uint32_t vpn )
   879 {
   880     mmu_urc++;
   881     mem_region_fn_t fn = sh4_address_space[vpn>>12];
   882     if( fn >= &mmu_utlb_pages[0].fn && fn < &mmu_utlb_pages[UTLB_ENTRY_COUNT].fn ) {
   883         return ((struct utlb_page_entry *)fn) - &mmu_utlb_pages[0];
   884     } else if( fn >= &mmu_utlb_1k_pages[0].fn && fn < &mmu_utlb_1k_pages[UTLB_ENTRY_COUNT].fn ) {
   885         struct utlb_1k_entry *ent = (struct utlb_1k_entry *)fn;
   886         fn = ent->subpages[(vpn>>10)&0x03];
   887         if( fn >= &mmu_utlb_pages[0].fn && fn < &mmu_utlb_pages[UTLB_ENTRY_COUNT].fn ) {
   888             return ((struct utlb_page_entry *)fn) - &mmu_utlb_pages[0];
   889         }            
   890     } 
   891     if( fn == &mem_region_tlb_multihit ) {
   892         return -2;
   893     } else {
   894         return -1;
   895     }
   896 }
   899 /**
   900  * Perform the actual utlb lookup w/ asid matching.
   901  * Possible utcomes are:
   902  *   0..63 Single match - good, return entry found
   903  *   -1 No match - raise a tlb data miss exception
   904  *   -2 Multiple matches - raise a multi-hit exception (reset)
   905  * @param vpn virtual address to resolve
   906  * @return the resultant UTLB entry, or an error.
   907  */
   908 static inline int mmu_utlb_lookup_vpn_asid( uint32_t vpn )
   909 {
   910     int result = -1;
   911     unsigned int i;
   913     mmu_urc++;
   914     if( mmu_urc == mmu_urb || mmu_urc == 0x40 ) {
   915         mmu_urc = 0;
   916     }
   918     for( i = 0; i < UTLB_ENTRY_COUNT; i++ ) {
   919         if( (mmu_utlb[i].flags & TLB_VALID) &&
   920                 ((mmu_utlb[i].flags & TLB_SHARE) || mmu_asid == mmu_utlb[i].asid) &&
   921                 ((mmu_utlb[i].vpn ^ vpn) & mmu_utlb[i].mask) == 0 ) {
   922             if( result != -1 ) {
   923                 return -2;
   924             }
   925             result = i;
   926         }
   927     }
   928     return result;
   929 }
   931 /**
   932  * Perform the actual utlb lookup matching on vpn only
   933  * Possible utcomes are:
   934  *   0..63 Single match - good, return entry found
   935  *   -1 No match - raise a tlb data miss exception
   936  *   -2 Multiple matches - raise a multi-hit exception (reset)
   937  * @param vpn virtual address to resolve
   938  * @return the resultant UTLB entry, or an error.
   939  */
   940 static inline int mmu_utlb_lookup_vpn( uint32_t vpn )
   941 {
   942     int result = -1;
   943     unsigned int i;
   945     mmu_urc++;
   946     if( mmu_urc == mmu_urb || mmu_urc == 0x40 ) {
   947         mmu_urc = 0;
   948     }
   950     for( i = 0; i < UTLB_ENTRY_COUNT; i++ ) {
   951         if( (mmu_utlb[i].flags & TLB_VALID) &&
   952                 ((mmu_utlb[i].vpn ^ vpn) & mmu_utlb[i].mask) == 0 ) {
   953             if( result != -1 ) {
   954                 return -2;
   955             }
   956             result = i;
   957         }
   958     }
   960     return result;
   961 }
   963 /**
   964  * Update the ITLB by replacing the LRU entry with the specified UTLB entry.
   965  * @return the number (0-3) of the replaced entry.
   966  */
   967 static int inline mmu_itlb_update_from_utlb( int entryNo )
   968 {
   969     int replace;
   970     /* Determine entry to replace based on lrui */
   971     if( (mmu_lrui & 0x38) == 0x38 ) {
   972         replace = 0;
   973         mmu_lrui = mmu_lrui & 0x07;
   974     } else if( (mmu_lrui & 0x26) == 0x06 ) {
   975         replace = 1;
   976         mmu_lrui = (mmu_lrui & 0x19) | 0x20;
   977     } else if( (mmu_lrui & 0x15) == 0x01 ) {
   978         replace = 2;
   979         mmu_lrui = (mmu_lrui & 0x3E) | 0x14;
   980     } else { // Note - gets invalid entries too
   981         replace = 3;
   982         mmu_lrui = (mmu_lrui | 0x0B);
   983     }
   985     mmu_itlb[replace].vpn = mmu_utlb[entryNo].vpn;
   986     mmu_itlb[replace].mask = mmu_utlb[entryNo].mask;
   987     mmu_itlb[replace].ppn = mmu_utlb[entryNo].ppn;
   988     mmu_itlb[replace].asid = mmu_utlb[entryNo].asid;
   989     mmu_itlb[replace].flags = mmu_utlb[entryNo].flags & 0x01DA;
   990     return replace;
   991 }
   993 /**
   994  * Perform the actual itlb lookup w/ asid protection
   995  * Possible utcomes are:
   996  *   0..63 Single match - good, return entry found
   997  *   -1 No match - raise a tlb data miss exception
   998  *   -2 Multiple matches - raise a multi-hit exception (reset)
   999  * @param vpn virtual address to resolve
  1000  * @return the resultant ITLB entry, or an error.
  1001  */
  1002 static inline int mmu_itlb_lookup_vpn_asid( uint32_t vpn )
  1004     int result = -1;
  1005     unsigned int i;
  1007     for( i = 0; i < ITLB_ENTRY_COUNT; i++ ) {
  1008         if( (mmu_itlb[i].flags & TLB_VALID) &&
  1009                 ((mmu_itlb[i].flags & TLB_SHARE) || mmu_asid == mmu_itlb[i].asid) &&
  1010                 ((mmu_itlb[i].vpn ^ vpn) & mmu_itlb[i].mask) == 0 ) {
  1011             if( result != -1 ) {
  1012                 return -2;
  1014             result = i;
  1018     if( result == -1 ) {
  1019         int utlbEntry = mmu_utlb_entry_for_vpn( vpn );
  1020         if( utlbEntry < 0 ) {
  1021             return utlbEntry;
  1022         } else {
  1023             return mmu_itlb_update_from_utlb( utlbEntry );
  1027     switch( result ) {
  1028     case 0: mmu_lrui = (mmu_lrui & 0x07); break;
  1029     case 1: mmu_lrui = (mmu_lrui & 0x19) | 0x20; break;
  1030     case 2: mmu_lrui = (mmu_lrui & 0x3E) | 0x14; break;
  1031     case 3: mmu_lrui = (mmu_lrui | 0x0B); break;
  1034     return result;
  1037 /**
  1038  * Perform the actual itlb lookup on vpn only
  1039  * Possible utcomes are:
  1040  *   0..63 Single match - good, return entry found
  1041  *   -1 No match - raise a tlb data miss exception
  1042  *   -2 Multiple matches - raise a multi-hit exception (reset)
  1043  * @param vpn virtual address to resolve
  1044  * @return the resultant ITLB entry, or an error.
  1045  */
  1046 static inline int mmu_itlb_lookup_vpn( uint32_t vpn )
  1048     int result = -1;
  1049     unsigned int i;
  1051     for( i = 0; i < ITLB_ENTRY_COUNT; i++ ) {
  1052         if( (mmu_itlb[i].flags & TLB_VALID) &&
  1053                 ((mmu_itlb[i].vpn ^ vpn) & mmu_itlb[i].mask) == 0 ) {
  1054             if( result != -1 ) {
  1055                 return -2;
  1057             result = i;
  1061     if( result == -1 ) {
  1062         int utlbEntry = mmu_utlb_lookup_vpn( vpn );
  1063         if( utlbEntry < 0 ) {
  1064             return utlbEntry;
  1065         } else {
  1066             return mmu_itlb_update_from_utlb( utlbEntry );
  1070     switch( result ) {
  1071     case 0: mmu_lrui = (mmu_lrui & 0x07); break;
  1072     case 1: mmu_lrui = (mmu_lrui & 0x19) | 0x20; break;
  1073     case 2: mmu_lrui = (mmu_lrui & 0x3E) | 0x14; break;
  1074     case 3: mmu_lrui = (mmu_lrui | 0x0B); break;
  1077     return result;
  1080 /**
  1081  * Update the icache for an untranslated address
  1082  */
  1083 static inline void mmu_update_icache_phys( sh4addr_t addr )
  1085     if( (addr & 0x1C000000) == 0x0C000000 ) {
  1086         /* Main ram */
  1087         sh4_icache.page_vma = addr & 0xFF000000;
  1088         sh4_icache.page_ppa = 0x0C000000;
  1089         sh4_icache.mask = 0xFF000000;
  1090         sh4_icache.page = dc_main_ram;
  1091     } else if( (addr & 0x1FE00000) == 0 ) {
  1092         /* BIOS ROM */
  1093         sh4_icache.page_vma = addr & 0xFFE00000;
  1094         sh4_icache.page_ppa = 0;
  1095         sh4_icache.mask = 0xFFE00000;
  1096         sh4_icache.page = dc_boot_rom;
  1097     } else {
  1098         /* not supported */
  1099         sh4_icache.page_vma = -1;
  1103 /**
  1104  * Update the sh4_icache structure to describe the page(s) containing the
  1105  * given vma. If the address does not reference a RAM/ROM region, the icache
  1106  * will be invalidated instead.
  1107  * If AT is on, this method will raise TLB exceptions normally
  1108  * (hence this method should only be used immediately prior to execution of
  1109  * code), and otherwise will set the icache according to the matching TLB entry.
  1110  * If AT is off, this method will set the entire referenced RAM/ROM region in
  1111  * the icache.
  1112  * @return TRUE if the update completed (successfully or otherwise), FALSE
  1113  * if an exception was raised.
  1114  */
  1115 gboolean FASTCALL mmu_update_icache( sh4vma_t addr )
  1117     int entryNo;
  1118     if( IS_SH4_PRIVMODE()  ) {
  1119         if( addr & 0x80000000 ) {
  1120             if( addr < 0xC0000000 ) {
  1121                 /* P1, P2 and P4 regions are pass-through (no translation) */
  1122                 mmu_update_icache_phys(addr);
  1123                 return TRUE;
  1124             } else if( addr >= 0xE0000000 && addr < 0xFFFFFF00 ) {
  1125                 RAISE_MEM_ERROR(EXC_DATA_ADDR_READ, addr);
  1126                 return FALSE;
  1130         uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1131         if( (mmucr & MMUCR_AT) == 0 ) {
  1132             mmu_update_icache_phys(addr);
  1133             return TRUE;
  1136         if( (mmucr & MMUCR_SV) == 0 )
  1137         	entryNo = mmu_itlb_lookup_vpn_asid( addr );
  1138         else
  1139         	entryNo = mmu_itlb_lookup_vpn( addr );
  1140     } else {
  1141         if( addr & 0x80000000 ) {
  1142             RAISE_MEM_ERROR(EXC_DATA_ADDR_READ, addr);
  1143             return FALSE;
  1146         uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1147         if( (mmucr & MMUCR_AT) == 0 ) {
  1148             mmu_update_icache_phys(addr);
  1149             return TRUE;
  1152         entryNo = mmu_itlb_lookup_vpn_asid( addr );
  1154         if( entryNo != -1 && (mmu_itlb[entryNo].flags & TLB_USERMODE) == 0 ) {
  1155             RAISE_MEM_ERROR(EXC_TLB_PROT_READ, addr);
  1156             return FALSE;
  1160     switch(entryNo) {
  1161     case -1:
  1162     RAISE_TLB_ERROR(EXC_TLB_MISS_READ, addr);
  1163     return FALSE;
  1164     case -2:
  1165     RAISE_TLB_MULTIHIT_ERROR(addr);
  1166     return FALSE;
  1167     default:
  1168         sh4_icache.page_ppa = mmu_itlb[entryNo].ppn & mmu_itlb[entryNo].mask;
  1169         sh4_icache.page = mem_get_region( sh4_icache.page_ppa );
  1170         if( sh4_icache.page == NULL ) {
  1171             sh4_icache.page_vma = -1;
  1172         } else {
  1173             sh4_icache.page_vma = mmu_itlb[entryNo].vpn & mmu_itlb[entryNo].mask;
  1174             sh4_icache.mask = mmu_itlb[entryNo].mask;
  1176         return TRUE;
  1180 /**
  1181  * Translate address for disassembly purposes (ie performs an instruction
  1182  * lookup) - does not raise exceptions or modify any state, and ignores
  1183  * protection bits. Returns the translated address, or MMU_VMA_ERROR
  1184  * on translation failure.
  1185  */
  1186 sh4addr_t FASTCALL mmu_vma_to_phys_disasm( sh4vma_t vma )
  1188     if( vma & 0x80000000 ) {
  1189         if( vma < 0xC0000000 ) {
  1190             /* P1, P2 and P4 regions are pass-through (no translation) */
  1191             return VMA_TO_EXT_ADDR(vma);
  1192         } else if( vma >= 0xE0000000 && vma < 0xFFFFFF00 ) {
  1193             /* Not translatable */
  1194             return MMU_VMA_ERROR;
  1198     uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1199     if( (mmucr & MMUCR_AT) == 0 ) {
  1200         return VMA_TO_EXT_ADDR(vma);
  1203     int entryNo = mmu_itlb_lookup_vpn( vma );
  1204     if( entryNo == -2 ) {
  1205         entryNo = mmu_itlb_lookup_vpn_asid( vma );
  1207     if( entryNo < 0 ) {
  1208         return MMU_VMA_ERROR;
  1209     } else {
  1210         return (mmu_itlb[entryNo].ppn & mmu_itlb[entryNo].mask) |
  1211         (vma & (~mmu_itlb[entryNo].mask));
  1215 /**
  1216  * Translate a virtual to physical address for reading, raising exceptions as
  1217  * observed.
  1218  * @param addr Pointer to the virtual memory address. On successful return,
  1219  * will be updated to contain the physical address.
  1220  */
  1221 mem_region_fn_t FASTCALL mmu_get_region_for_vma_read( sh4vma_t *paddr )
  1223     sh4vma_t addr = *paddr;
  1224     uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1225     if( addr & 0x80000000 ) {
  1226         if( IS_SH4_PRIVMODE() ) {
  1227             if( addr >= 0xE0000000 ) {
  1228                 return sh4_address_space[((uint32_t)addr)>>12]; /* P4 - passthrough */
  1229             } else if( addr < 0xC0000000 ) {
  1230                 /* P1, P2 regions are pass-through (no translation) */
  1231                 return sh4_ext_address_space[VMA_TO_EXT_ADDR(addr)>>12];
  1233         } else {
  1234             if( addr >= 0xE0000000 && addr < 0xE4000000 &&
  1235                     ((mmucr&MMUCR_SQMD) == 0) ) {
  1236                 /* Conditional user-mode access to the store-queue (no translation) */
  1237                 return &p4_region_storequeue;
  1239             sh4_raise_exception(EXC_DATA_ADDR_READ);
  1240             return NULL;
  1244     if( (mmucr & MMUCR_AT) == 0 ) {
  1245         return sh4_address_space[addr>>12];
  1248     /* If we get this far, translation is required */
  1249     int entryNo;
  1250     if( ((mmucr & MMUCR_SV) == 0) || !IS_SH4_PRIVMODE() ) {
  1251         entryNo = mmu_utlb_lookup_vpn_asid( addr );
  1252     } else {
  1253         entryNo = mmu_utlb_lookup_vpn( addr );
  1256     switch(entryNo) {
  1257     case -1:
  1258         RAISE_TLB_ERROR(EXC_TLB_MISS_READ,addr);
  1259         return NULL;
  1260     case -2:
  1261         RAISE_TLB_MULTIHIT_ERROR(addr);
  1262         return NULL;
  1263     default:
  1264         if( (mmu_utlb[entryNo].flags & TLB_USERMODE) == 0 &&
  1265                 !IS_SH4_PRIVMODE() ) {
  1266             /* protection violation */
  1267             RAISE_MEM_ERROR(EXC_TLB_PROT_READ,addr);
  1268             return NULL;
  1271         /* finally generate the target address */
  1272         sh4addr_t pma = (mmu_utlb[entryNo].ppn & mmu_utlb[entryNo].mask) |
  1273                 (addr & (~mmu_utlb[entryNo].mask));
  1274         if( pma > 0x1C000000 ) { // Remap 1Cxx .. 1Fxx region to P4
  1275             addr = pma | 0xE0000000;
  1276             *paddr = addr;
  1277             return sh4_address_space[addr>>12];
  1278         } else {
  1279             *paddr = pma;
  1280             return sh4_ext_address_space[pma>>12];
  1285 /**
  1286  * Translate a virtual to physical address for prefetch, which mostly
  1287  * does not raise exceptions.
  1288  * @param addr Pointer to the virtual memory address. On successful return,
  1289  * will be updated to contain the physical address.
  1290  */
  1291 mem_region_fn_t FASTCALL mmu_get_region_for_vma_prefetch( sh4vma_t *paddr )
  1293     sh4vma_t addr = *paddr;
  1294     uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1295     if( addr & 0x80000000 ) {
  1296         if( IS_SH4_PRIVMODE() ) {
  1297             if( addr >= 0xE0000000 ) {
  1298                 return sh4_address_space[((uint32_t)addr)>>12]; /* P4 - passthrough */
  1299             } else if( addr < 0xC0000000 ) {
  1300                 /* P1, P2 regions are pass-through (no translation) */
  1301                 return sh4_ext_address_space[VMA_TO_EXT_ADDR(addr)>>12];
  1303         } else {
  1304             if( addr >= 0xE0000000 && addr < 0xE4000000 &&
  1305                     ((mmucr&MMUCR_SQMD) == 0) ) {
  1306                 /* Conditional user-mode access to the store-queue (no translation) */
  1307                 return &p4_region_storequeue;
  1309             sh4_raise_exception(EXC_DATA_ADDR_READ);
  1310             return NULL;
  1314     if( (mmucr & MMUCR_AT) == 0 ) {
  1315         return sh4_address_space[addr>>12];
  1318     /* If we get this far, translation is required */
  1319     int entryNo;
  1320     if( ((mmucr & MMUCR_SV) == 0) || !IS_SH4_PRIVMODE() ) {
  1321         entryNo = mmu_utlb_lookup_vpn_asid( addr );
  1322     } else {
  1323         entryNo = mmu_utlb_lookup_vpn( addr );
  1326     switch(entryNo) {
  1327     case -1:
  1328         return &mem_region_unmapped;
  1329     case -2:
  1330         RAISE_TLB_MULTIHIT_ERROR(addr);
  1331         return NULL;
  1332     default:
  1333         if( (mmu_utlb[entryNo].flags & TLB_USERMODE) == 0 &&
  1334                 !IS_SH4_PRIVMODE() ) {
  1335             /* protection violation */
  1336             return &mem_region_unmapped;
  1339         /* finally generate the target address */
  1340         sh4addr_t pma = (mmu_utlb[entryNo].ppn & mmu_utlb[entryNo].mask) |
  1341                 (addr & (~mmu_utlb[entryNo].mask));
  1342         if( pma > 0x1C000000 ) { // Remap 1Cxx .. 1Fxx region to P4
  1343             addr = pma | 0xE0000000;
  1344             *paddr = addr;
  1345             return sh4_address_space[addr>>12];
  1346         } else {
  1347             *paddr = pma;
  1348             return sh4_ext_address_space[pma>>12];
  1353 /**
  1354  * Translate a virtual to physical address for writing, raising exceptions as
  1355  * observed.
  1356  */
  1357 mem_region_fn_t FASTCALL mmu_get_region_for_vma_write( sh4vma_t *paddr )
  1359     sh4vma_t addr = *paddr;
  1360     uint32_t mmucr = MMIO_READ(MMU,MMUCR);
  1361     if( addr & 0x80000000 ) {
  1362         if( IS_SH4_PRIVMODE() ) {
  1363             if( addr >= 0xE0000000 ) {
  1364                 return sh4_address_space[((uint32_t)addr)>>12]; /* P4 - passthrough */
  1365             } else if( addr < 0xC0000000 ) {
  1366                 /* P1, P2 regions are pass-through (no translation) */
  1367                 return sh4_ext_address_space[VMA_TO_EXT_ADDR(addr)>>12];
  1369         } else {
  1370             if( addr >= 0xE0000000 && addr < 0xE4000000 &&
  1371                     ((mmucr&MMUCR_SQMD) == 0) ) {
  1372                 /* Conditional user-mode access to the store-queue (no translation) */
  1373                 return &p4_region_storequeue;
  1375             sh4_raise_exception(EXC_DATA_ADDR_WRITE);
  1376             return NULL;
  1380     if( (mmucr & MMUCR_AT) == 0 ) {
  1381         return sh4_address_space[addr>>12];
  1384     /* If we get this far, translation is required */
  1385     int entryNo;
  1386     if( ((mmucr & MMUCR_SV) == 0) || !IS_SH4_PRIVMODE() ) {
  1387         entryNo = mmu_utlb_lookup_vpn_asid( addr );
  1388     } else {
  1389         entryNo = mmu_utlb_lookup_vpn( addr );
  1392     switch(entryNo) {
  1393     case -1:
  1394         RAISE_TLB_ERROR(EXC_TLB_MISS_WRITE,addr);
  1395         return NULL;
  1396     case -2:
  1397         RAISE_TLB_MULTIHIT_ERROR(addr);
  1398         return NULL;
  1399     default:
  1400         if( IS_SH4_PRIVMODE() ? ((mmu_utlb[entryNo].flags & TLB_WRITABLE) == 0)
  1401                 : ((mmu_utlb[entryNo].flags & TLB_USERWRITABLE) != TLB_USERWRITABLE) ) {
  1402             /* protection violation */
  1403             RAISE_MEM_ERROR(EXC_TLB_PROT_WRITE,addr);
  1404             return NULL;
  1407         if( (mmu_utlb[entryNo].flags & TLB_DIRTY) == 0 ) {
  1408             RAISE_MEM_ERROR(EXC_INIT_PAGE_WRITE, addr);
  1409             return NULL;
  1412         /* finally generate the target address */
  1413         sh4addr_t pma = (mmu_utlb[entryNo].ppn & mmu_utlb[entryNo].mask) |
  1414                 (addr & (~mmu_utlb[entryNo].mask));
  1415         if( pma > 0x1C000000 ) { // Remap 1Cxx .. 1Fxx region to P4
  1416             addr = pma | 0xE0000000;
  1417             *paddr = addr;
  1418             return sh4_address_space[addr>>12];
  1419         } else {
  1420             *paddr = pma;
  1421             return sh4_ext_address_space[pma>>12];
  1428 /********************** TLB Direct-Access Regions ***************************/
  1429 #define ITLB_ENTRY(addr) ((addr>>7)&0x03)
  1431 int32_t FASTCALL mmu_itlb_addr_read( sh4addr_t addr )
  1433     struct itlb_entry *ent = &mmu_itlb[ITLB_ENTRY(addr)];
  1434     return ent->vpn | ent->asid | (ent->flags & TLB_VALID);
  1437 void FASTCALL mmu_itlb_addr_write( sh4addr_t addr, uint32_t val )
  1439     struct itlb_entry *ent = &mmu_itlb[ITLB_ENTRY(addr)];
  1440     ent->vpn = val & 0xFFFFFC00;
  1441     ent->asid = val & 0x000000FF;
  1442     ent->flags = (ent->flags & ~(TLB_VALID)) | (val&TLB_VALID);
  1445 int32_t FASTCALL mmu_itlb_data_read( sh4addr_t addr )
  1447     struct itlb_entry *ent = &mmu_itlb[ITLB_ENTRY(addr)];
  1448     return (ent->ppn & 0x1FFFFC00) | ent->flags;
  1451 void FASTCALL mmu_itlb_data_write( sh4addr_t addr, uint32_t val )
  1453     struct itlb_entry *ent = &mmu_itlb[ITLB_ENTRY(addr)];
  1454     ent->ppn = val & 0x1FFFFC00;
  1455     ent->flags = val & 0x00001DA;
  1456     ent->mask = get_tlb_size_mask(val);
  1457     if( ent->ppn >= 0x1C000000 )
  1458         ent->ppn |= 0xE0000000;
  1461 #define UTLB_ENTRY(addr) ((addr>>8)&0x3F)
  1462 #define UTLB_ASSOC(addr) (addr&0x80)
  1463 #define UTLB_DATA2(addr) (addr&0x00800000)
  1465 int32_t FASTCALL mmu_utlb_addr_read( sh4addr_t addr )
  1467     struct utlb_entry *ent = &mmu_utlb[UTLB_ENTRY(addr)];
  1468     return ent->vpn | ent->asid | (ent->flags & TLB_VALID) |
  1469     ((ent->flags & TLB_DIRTY)<<7);
  1471 int32_t FASTCALL mmu_utlb_data_read( sh4addr_t addr )
  1473     struct utlb_entry *ent = &mmu_utlb[UTLB_ENTRY(addr)];
  1474     if( UTLB_DATA2(addr) ) {
  1475         return ent->pcmcia;
  1476     } else {
  1477         return (ent->ppn&0x1FFFFC00) | ent->flags;
  1481 /**
  1482  * Find a UTLB entry for the associative TLB write - same as the normal
  1483  * lookup but ignores the valid bit.
  1484  */
  1485 static inline int mmu_utlb_lookup_assoc( uint32_t vpn, uint32_t asid )
  1487     int result = -1;
  1488     unsigned int i;
  1489     for( i = 0; i < UTLB_ENTRY_COUNT; i++ ) {
  1490         if( (mmu_utlb[i].flags & TLB_VALID) &&
  1491                 ((mmu_utlb[i].flags & TLB_SHARE) || asid == mmu_utlb[i].asid) &&
  1492                 ((mmu_utlb[i].vpn ^ vpn) & mmu_utlb[i].mask) == 0 ) {
  1493             if( result != -1 ) {
  1494                 fprintf( stderr, "TLB Multi hit: %d %d\n", result, i );
  1495                 return -2;
  1497             result = i;
  1500     return result;
  1503 /**
  1504  * Find a ITLB entry for the associative TLB write - same as the normal
  1505  * lookup but ignores the valid bit.
  1506  */
  1507 static inline int mmu_itlb_lookup_assoc( uint32_t vpn, uint32_t asid )
  1509     int result = -1;
  1510     unsigned int i;
  1511     for( i = 0; i < ITLB_ENTRY_COUNT; i++ ) {
  1512         if( (mmu_itlb[i].flags & TLB_VALID) &&
  1513                 ((mmu_itlb[i].flags & TLB_SHARE) || asid == mmu_itlb[i].asid) &&
  1514                 ((mmu_itlb[i].vpn ^ vpn) & mmu_itlb[i].mask) == 0 ) {
  1515             if( result != -1 ) {
  1516                 return -2;
  1518             result = i;
  1521     return result;
  1524 void FASTCALL mmu_utlb_addr_write( sh4addr_t addr, uint32_t val, void *exc )
  1526     if( UTLB_ASSOC(addr) ) {
  1527         int utlb = mmu_utlb_lookup_assoc( val, mmu_asid );
  1528         if( utlb >= 0 ) {
  1529             struct utlb_entry *ent = &mmu_utlb[utlb];
  1530             uint32_t old_flags = ent->flags;
  1531             ent->flags = ent->flags & ~(TLB_DIRTY|TLB_VALID);
  1532             ent->flags |= (val & TLB_VALID);
  1533             ent->flags |= ((val & 0x200)>>7);
  1534             if( IS_TLB_ENABLED() && ((old_flags^ent->flags) & (TLB_VALID|TLB_DIRTY)) != 0 ) {
  1535                 if( old_flags & TLB_VALID )
  1536                     mmu_utlb_remove_entry( utlb );
  1537                 if( ent->flags & TLB_VALID )
  1538                     mmu_utlb_insert_entry( utlb );
  1542         int itlb = mmu_itlb_lookup_assoc( val, mmu_asid );
  1543         if( itlb >= 0 ) {
  1544             struct itlb_entry *ent = &mmu_itlb[itlb];
  1545             ent->flags = (ent->flags & (~TLB_VALID)) | (val & TLB_VALID);
  1548         if( itlb == -2 || utlb == -2 ) {
  1549             RAISE_TLB_MULTIHIT_ERROR(addr); /* FIXME: should this only be raised if TLB is enabled? */
  1550             SH4_EXCEPTION_EXIT();
  1551             return;
  1553     } else {
  1554         struct utlb_entry *ent = &mmu_utlb[UTLB_ENTRY(addr)];
  1555         if( IS_TLB_ENABLED() && ent->flags & TLB_VALID )
  1556             mmu_utlb_remove_entry( UTLB_ENTRY(addr) );
  1557         ent->vpn = (val & 0xFFFFFC00);
  1558         ent->asid = (val & 0xFF);
  1559         ent->flags = (ent->flags & ~(TLB_DIRTY|TLB_VALID));
  1560         ent->flags |= (val & TLB_VALID);
  1561         ent->flags |= ((val & 0x200)>>7);
  1562         if( IS_TLB_ENABLED() && ent->flags & TLB_VALID )
  1563             mmu_utlb_insert_entry( UTLB_ENTRY(addr) );
  1567 void FASTCALL mmu_utlb_data_write( sh4addr_t addr, uint32_t val )
  1569     struct utlb_entry *ent = &mmu_utlb[UTLB_ENTRY(addr)];
  1570     if( UTLB_DATA2(addr) ) {
  1571         ent->pcmcia = val & 0x0000000F;
  1572     } else {
  1573         if( IS_TLB_ENABLED() && ent->flags & TLB_VALID )
  1574             mmu_utlb_remove_entry( UTLB_ENTRY(addr) );
  1575         ent->ppn = (val & 0x1FFFFC00);
  1576         ent->flags = (val & 0x000001FF);
  1577         ent->mask = get_tlb_size_mask(val);
  1578         if( IS_TLB_ENABLED() && ent->flags & TLB_VALID )
  1579             mmu_utlb_insert_entry( UTLB_ENTRY(addr) );
  1583 struct mem_region_fn p4_region_itlb_addr = {
  1584         mmu_itlb_addr_read, mmu_itlb_addr_write,
  1585         mmu_itlb_addr_read, mmu_itlb_addr_write,
  1586         mmu_itlb_addr_read, mmu_itlb_addr_write,
  1587         unmapped_read_burst, unmapped_write_burst,
  1588         unmapped_prefetch, mmu_itlb_addr_read };
  1589 struct mem_region_fn p4_region_itlb_data = {
  1590         mmu_itlb_data_read, mmu_itlb_data_write,
  1591         mmu_itlb_data_read, mmu_itlb_data_write,
  1592         mmu_itlb_data_read, mmu_itlb_data_write,
  1593         unmapped_read_burst, unmapped_write_burst,
  1594         unmapped_prefetch, mmu_itlb_data_read };
  1595 struct mem_region_fn p4_region_utlb_addr = {
  1596         mmu_utlb_addr_read, (mem_write_fn_t)mmu_utlb_addr_write,
  1597         mmu_utlb_addr_read, (mem_write_fn_t)mmu_utlb_addr_write,
  1598         mmu_utlb_addr_read, (mem_write_fn_t)mmu_utlb_addr_write,
  1599         unmapped_read_burst, unmapped_write_burst,
  1600         unmapped_prefetch, mmu_utlb_addr_read };
  1601 struct mem_region_fn p4_region_utlb_data = {
  1602         mmu_utlb_data_read, mmu_utlb_data_write,
  1603         mmu_utlb_data_read, mmu_utlb_data_write,
  1604         mmu_utlb_data_read, mmu_utlb_data_write,
  1605         unmapped_read_burst, unmapped_write_burst,
  1606         unmapped_prefetch, mmu_utlb_data_read };
  1608 /********************** Error regions **************************/
  1610 static void FASTCALL address_error_read( sh4addr_t addr, void *exc ) 
  1612     RAISE_MEM_ERROR(EXC_DATA_ADDR_READ, addr);
  1613     SH4_EXCEPTION_EXIT();
  1616 static void FASTCALL address_error_read_for_write( sh4addr_t addr, void *exc ) 
  1618     RAISE_MEM_ERROR(EXC_DATA_ADDR_WRITE, addr);
  1619     SH4_EXCEPTION_EXIT();
  1622 static void FASTCALL address_error_read_burst( unsigned char *dest, sh4addr_t addr, void *exc ) 
  1624     RAISE_MEM_ERROR(EXC_DATA_ADDR_READ, addr);
  1625     SH4_EXCEPTION_EXIT();
  1628 static void FASTCALL address_error_write( sh4addr_t addr, uint32_t val, void *exc )
  1630     RAISE_MEM_ERROR(EXC_DATA_ADDR_WRITE, addr);
  1631     SH4_EXCEPTION_EXIT();
  1634 static void FASTCALL tlb_miss_read( sh4addr_t addr, void *exc )
  1636     mmu_urc++;
  1637     RAISE_TLB_ERROR(EXC_TLB_MISS_READ, addr);
  1638     SH4_EXCEPTION_EXIT();
  1641 static void FASTCALL tlb_miss_read_for_write( sh4addr_t addr, void *exc )
  1643     mmu_urc++;
  1644     RAISE_TLB_ERROR(EXC_TLB_MISS_WRITE, addr);
  1645     SH4_EXCEPTION_EXIT();
  1648 static void FASTCALL tlb_miss_read_burst( unsigned char *dest, sh4addr_t addr, void *exc )
  1650     mmu_urc++;
  1651     RAISE_TLB_ERROR(EXC_TLB_MISS_READ, addr);
  1652     SH4_EXCEPTION_EXIT();
  1655 static void FASTCALL tlb_miss_write( sh4addr_t addr, uint32_t val, void *exc )
  1657     mmu_urc++;
  1658     RAISE_TLB_ERROR(EXC_TLB_MISS_WRITE, addr);
  1659     SH4_EXCEPTION_EXIT();
  1662 static int32_t FASTCALL tlb_protected_read( sh4addr_t addr, void *exc )
  1664     mmu_urc++;
  1665     RAISE_MEM_ERROR(EXC_TLB_PROT_READ, addr);
  1666     SH4_EXCEPTION_EXIT();
  1667     return 0; 
  1670 static int32_t FASTCALL tlb_protected_read_for_write( sh4addr_t addr, void *exc )
  1672     mmu_urc++;
  1673     RAISE_MEM_ERROR(EXC_TLB_PROT_WRITE, addr);
  1674     SH4_EXCEPTION_EXIT();
  1675     return 0;
  1678 static int32_t FASTCALL tlb_protected_read_burst( unsigned char *dest, sh4addr_t addr, void *exc )
  1680     mmu_urc++;
  1681     RAISE_MEM_ERROR(EXC_TLB_PROT_READ, addr);
  1682     SH4_EXCEPTION_EXIT();
  1683     return 0;
  1686 static void FASTCALL tlb_protected_write( sh4addr_t addr, uint32_t val, void *exc )
  1688     mmu_urc++;
  1689     RAISE_MEM_ERROR(EXC_TLB_PROT_WRITE, addr);
  1690     SH4_EXCEPTION_EXIT();
  1693 static void FASTCALL tlb_initial_write( sh4addr_t addr, uint32_t val, void *exc )
  1695     mmu_urc++;
  1696     RAISE_MEM_ERROR(EXC_INIT_PAGE_WRITE, addr);
  1697     SH4_EXCEPTION_EXIT();
  1700 static int32_t FASTCALL tlb_initial_read_for_write( sh4addr_t addr, void *exc )
  1702     mmu_urc++;
  1703     RAISE_MEM_ERROR(EXC_INIT_PAGE_WRITE, addr);
  1704     SH4_EXCEPTION_EXIT();
  1705     return 0;
  1708 static int32_t FASTCALL tlb_multi_hit_read( sh4addr_t addr, void *exc )
  1710     sh4_raise_tlb_multihit(addr);
  1711     SH4_EXCEPTION_EXIT();
  1712     return 0; 
  1715 static int32_t FASTCALL tlb_multi_hit_read_burst( unsigned char *dest, sh4addr_t addr, void *exc )
  1717     sh4_raise_tlb_multihit(addr);
  1718     SH4_EXCEPTION_EXIT();
  1719     return 0; 
  1721 static void FASTCALL tlb_multi_hit_write( sh4addr_t addr, uint32_t val, void *exc )
  1723     sh4_raise_tlb_multihit(addr);
  1724     SH4_EXCEPTION_EXIT();
  1727 /**
  1728  * Note: Per sec 4.6.4 of the SH7750 manual, SQ 
  1729  */
  1730 struct mem_region_fn mem_region_address_error = {
  1731         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1732         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1733         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1734         (mem_read_burst_fn_t)address_error_read_burst, (mem_write_burst_fn_t)address_error_write,
  1735         unmapped_prefetch, (mem_read_fn_t)address_error_read_for_write };
  1737 struct mem_region_fn mem_region_tlb_miss = {
  1738         (mem_read_fn_t)tlb_miss_read, (mem_write_fn_t)tlb_miss_write,
  1739         (mem_read_fn_t)tlb_miss_read, (mem_write_fn_t)tlb_miss_write,
  1740         (mem_read_fn_t)tlb_miss_read, (mem_write_fn_t)tlb_miss_write,
  1741         (mem_read_burst_fn_t)tlb_miss_read_burst, (mem_write_burst_fn_t)tlb_miss_write,
  1742         unmapped_prefetch, (mem_read_fn_t)tlb_miss_read_for_write };
  1744 struct mem_region_fn mem_region_tlb_protected = {
  1745         (mem_read_fn_t)tlb_protected_read, (mem_write_fn_t)tlb_protected_write,
  1746         (mem_read_fn_t)tlb_protected_read, (mem_write_fn_t)tlb_protected_write,
  1747         (mem_read_fn_t)tlb_protected_read, (mem_write_fn_t)tlb_protected_write,
  1748         (mem_read_burst_fn_t)tlb_protected_read_burst, (mem_write_burst_fn_t)tlb_protected_write,
  1749         unmapped_prefetch, (mem_read_fn_t)tlb_protected_read_for_write };
  1751 struct mem_region_fn mem_region_tlb_multihit = {
  1752         (mem_read_fn_t)tlb_multi_hit_read, (mem_write_fn_t)tlb_multi_hit_write,
  1753         (mem_read_fn_t)tlb_multi_hit_read, (mem_write_fn_t)tlb_multi_hit_write,
  1754         (mem_read_fn_t)tlb_multi_hit_read, (mem_write_fn_t)tlb_multi_hit_write,
  1755         (mem_read_burst_fn_t)tlb_multi_hit_read_burst, (mem_write_burst_fn_t)tlb_multi_hit_write,
  1756         (mem_prefetch_fn_t)tlb_multi_hit_read, (mem_read_fn_t)tlb_multi_hit_read };
  1759 /* Store-queue regions */
  1760 /* These are a bit of a pain - the first 8 fields are controlled by SQMD, while 
  1761  * the final (prefetch) is controlled by the actual TLB settings (plus SQMD in
  1762  * some cases), in contrast to the ordinary fields above.
  1764  * There is probably a simpler way to do this.
  1765  */
  1767 struct mem_region_fn p4_region_storequeue = { 
  1768         ccn_storequeue_read_long, ccn_storequeue_write_long,
  1769         unmapped_read_long, unmapped_write_long, /* TESTME: Officially only long access is supported */
  1770         unmapped_read_long, unmapped_write_long,
  1771         unmapped_read_burst, unmapped_write_burst,
  1772         ccn_storequeue_prefetch, unmapped_read_long }; 
  1774 struct mem_region_fn p4_region_storequeue_miss = { 
  1775         ccn_storequeue_read_long, ccn_storequeue_write_long,
  1776         unmapped_read_long, unmapped_write_long, /* TESTME: Officially only long access is supported */
  1777         unmapped_read_long, unmapped_write_long,
  1778         unmapped_read_burst, unmapped_write_burst,
  1779         (mem_prefetch_fn_t)tlb_miss_read, unmapped_read_long }; 
  1781 struct mem_region_fn p4_region_storequeue_multihit = { 
  1782         ccn_storequeue_read_long, ccn_storequeue_write_long,
  1783         unmapped_read_long, unmapped_write_long, /* TESTME: Officially only long access is supported */
  1784         unmapped_read_long, unmapped_write_long,
  1785         unmapped_read_burst, unmapped_write_burst,
  1786         (mem_prefetch_fn_t)tlb_multi_hit_read, unmapped_read_long }; 
  1788 struct mem_region_fn p4_region_storequeue_protected = {
  1789         ccn_storequeue_read_long, ccn_storequeue_write_long,
  1790         unmapped_read_long, unmapped_write_long,
  1791         unmapped_read_long, unmapped_write_long,
  1792         unmapped_read_burst, unmapped_write_burst,
  1793         (mem_prefetch_fn_t)tlb_protected_read, unmapped_read_long };
  1795 struct mem_region_fn p4_region_storequeue_sqmd = {
  1796         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1797         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1798         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1799         (mem_read_burst_fn_t)address_error_read_burst, (mem_write_burst_fn_t)address_error_write,
  1800         (mem_prefetch_fn_t)address_error_read, (mem_read_fn_t)address_error_read_for_write };
  1802 struct mem_region_fn p4_region_storequeue_sqmd_miss = { 
  1803         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1804         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1805         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1806         (mem_read_burst_fn_t)address_error_read_burst, (mem_write_burst_fn_t)address_error_write,
  1807         (mem_prefetch_fn_t)tlb_miss_read, (mem_read_fn_t)address_error_read_for_write }; 
  1809 struct mem_region_fn p4_region_storequeue_sqmd_multihit = {
  1810         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1811         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1812         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1813         (mem_read_burst_fn_t)address_error_read_burst, (mem_write_burst_fn_t)address_error_write,
  1814         (mem_prefetch_fn_t)tlb_multi_hit_read, (mem_read_fn_t)address_error_read_for_write };
  1816 struct mem_region_fn p4_region_storequeue_sqmd_protected = {
  1817         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1818         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1819         (mem_read_fn_t)address_error_read, (mem_write_fn_t)address_error_write,
  1820         (mem_read_burst_fn_t)address_error_read_burst, (mem_write_burst_fn_t)address_error_write,
  1821         (mem_prefetch_fn_t)tlb_protected_read, (mem_read_fn_t)address_error_read_for_write };
.