Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 1188:1cc9bb0b3848
prev1187:266e7a1bae90
next1194:ee6ce5804608
author nkeynes
date Mon Dec 12 09:54:27 2011 +1000 (12 years ago)
permissions -rw-r--r--
last change FSRRA uses higher precision for intermediate results - change sqrtf to sqrt.
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "cpu.h"
    27 #include "mem.h"
    28 #include "clock.h"
    29 #include "eventq.h"
    30 #include "syscall.h"
    31 #include "sh4/intc.h"
    32 #include "sh4/mmu.h"
    33 #include "sh4/sh4core.h"
    34 #include "sh4/sh4dasm.h"
    35 #include "sh4/sh4mmio.h"
    36 #include "sh4/sh4stat.h"
    37 #include "sh4/sh4trans.h"
    38 #include "xlat/xltcache.h"
    40 #ifndef M_PI
    41 #define M_PI        3.14159265358979323846264338327950288
    42 #endif
    44 void sh4_init( void );
    45 void sh4_poweron_reset( void );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length );
    51 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length );
    52 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length );
    53 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length );
    55 uint32_t sh4_run_slice( uint32_t );
    57 /* Note: this must match GDB's ordering */
    58 const struct reg_desc_struct sh4_reg_map[] = 
    59   { {"R0", REG_TYPE_INT, &sh4r.r[0]}, {"R1", REG_TYPE_INT, &sh4r.r[1]},
    60     {"R2", REG_TYPE_INT, &sh4r.r[2]}, {"R3", REG_TYPE_INT, &sh4r.r[3]},
    61     {"R4", REG_TYPE_INT, &sh4r.r[4]}, {"R5", REG_TYPE_INT, &sh4r.r[5]},
    62     {"R6", REG_TYPE_INT, &sh4r.r[6]}, {"R7", REG_TYPE_INT, &sh4r.r[7]},
    63     {"R8", REG_TYPE_INT, &sh4r.r[8]}, {"R9", REG_TYPE_INT, &sh4r.r[9]},
    64     {"R10",REG_TYPE_INT, &sh4r.r[10]}, {"R11",REG_TYPE_INT, &sh4r.r[11]},
    65     {"R12",REG_TYPE_INT, &sh4r.r[12]}, {"R13",REG_TYPE_INT, &sh4r.r[13]},
    66     {"R14",REG_TYPE_INT, &sh4r.r[14]}, {"R15",REG_TYPE_INT, &sh4r.r[15]},
    67     {"PC", REG_TYPE_INT, &sh4r.pc}, {"PR", REG_TYPE_INT, &sh4r.pr},
    68     {"GBR", REG_TYPE_INT, &sh4r.gbr}, {"VBR",REG_TYPE_INT, &sh4r.vbr}, 
    69     {"MACH",REG_TYPE_INT, ((uint32_t *)&sh4r.mac)+1}, {"MACL",REG_TYPE_INT, &sh4r.mac},
    70     {"SR", REG_TYPE_INT, &sh4r.sr},
    71     {"FPUL", REG_TYPE_INT, &sh4r.fpul.i}, {"FPSCR", REG_TYPE_INT, &sh4r.fpscr},
    73     {"FR0", REG_TYPE_FLOAT, &sh4r.fr[0][1] },{"FR1", REG_TYPE_FLOAT, &sh4r.fr[0][0]},
    74     {"FR2", REG_TYPE_FLOAT, &sh4r.fr[0][3] },{"FR3", REG_TYPE_FLOAT, &sh4r.fr[0][2]},
    75     {"FR4", REG_TYPE_FLOAT, &sh4r.fr[0][5] },{"FR5", REG_TYPE_FLOAT, &sh4r.fr[0][4]},
    76     {"FR6", REG_TYPE_FLOAT, &sh4r.fr[0][7] },{"FR7", REG_TYPE_FLOAT, &sh4r.fr[0][6]},
    77     {"FR8", REG_TYPE_FLOAT, &sh4r.fr[0][9] },{"FR9", REG_TYPE_FLOAT, &sh4r.fr[0][8]},
    78     {"FR10", REG_TYPE_FLOAT, &sh4r.fr[0][11] },{"FR11", REG_TYPE_FLOAT, &sh4r.fr[0][10]},
    79     {"FR12", REG_TYPE_FLOAT, &sh4r.fr[0][13] },{"FR13", REG_TYPE_FLOAT, &sh4r.fr[0][12]},
    80     {"FR14", REG_TYPE_FLOAT, &sh4r.fr[0][15] },{"FR15", REG_TYPE_FLOAT, &sh4r.fr[0][14]},
    82     {"SSR",REG_TYPE_INT, &sh4r.ssr}, {"SPC", REG_TYPE_INT, &sh4r.spc},
    84     {"R0B0", REG_TYPE_INT, NULL}, {"R1B0", REG_TYPE_INT, NULL},
    85     {"R2B0", REG_TYPE_INT, NULL}, {"R3B0", REG_TYPE_INT, NULL},
    86     {"R4B0", REG_TYPE_INT, NULL}, {"R5B0", REG_TYPE_INT, NULL},
    87     {"R6B0", REG_TYPE_INT, NULL}, {"R7B0", REG_TYPE_INT, NULL},
    88     {"R0B1", REG_TYPE_INT, NULL}, {"R1B1", REG_TYPE_INT, NULL},
    89     {"R2B1", REG_TYPE_INT, NULL}, {"R3B1", REG_TYPE_INT, NULL},
    90     {"R4B1", REG_TYPE_INT, NULL}, {"R5B1", REG_TYPE_INT, NULL},
    91     {"R6B1", REG_TYPE_INT, NULL}, {"R7B1", REG_TYPE_INT, NULL},
    93     {"SGR",REG_TYPE_INT, &sh4r.sgr}, {"DBR", REG_TYPE_INT, &sh4r.dbr},
    95     {"XF0", REG_TYPE_FLOAT, &sh4r.fr[1][1] },{"XF1", REG_TYPE_FLOAT, &sh4r.fr[1][0]},
    96     {"XF2", REG_TYPE_FLOAT, &sh4r.fr[1][3] },{"XF3", REG_TYPE_FLOAT, &sh4r.fr[1][2]},
    97     {"XF4", REG_TYPE_FLOAT, &sh4r.fr[1][5] },{"XF5", REG_TYPE_FLOAT, &sh4r.fr[1][4]},
    98     {"XF6", REG_TYPE_FLOAT, &sh4r.fr[1][7] },{"XF7", REG_TYPE_FLOAT, &sh4r.fr[1][6]},
    99     {"XF8", REG_TYPE_FLOAT, &sh4r.fr[1][9] },{"XF9", REG_TYPE_FLOAT, &sh4r.fr[1][8]},
   100     {"XF10", REG_TYPE_FLOAT, &sh4r.fr[1][11] },{"XF11", REG_TYPE_FLOAT, &sh4r.fr[1][10]},
   101     {"XF12", REG_TYPE_FLOAT, &sh4r.fr[1][13] },{"XF13", REG_TYPE_FLOAT, &sh4r.fr[1][12]},
   102     {"XF14", REG_TYPE_FLOAT, &sh4r.fr[1][15] },{"XF15", REG_TYPE_FLOAT, &sh4r.fr[1][14]},
   104     {NULL, 0, NULL} };
   106 void *sh4_get_register( int reg )
   107 {
   108     if( reg < 0 || reg >= 94 ) {
   109         return NULL;
   110     } else if( reg < 43 ) {
   111         return sh4_reg_map[reg].value;
   112     } else if( reg < 51 ) {
   113         /* r0b0..r7b0 */
   114         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   115             /* bank 1 is primary */
   116             return &sh4r.r_bank[reg-43];
   117         } else {
   118             return &sh4r.r[reg-43];
   119         }
   120     } else if( reg < 59 ) {
   121         /* r0b1..r7b1 */
   122         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   123             /* bank 1 is primary */
   124             return &sh4r.r[reg-43];
   125         } else {
   126             return &sh4r.r_bank[reg-43];
   127         }
   128     } else {
   129         return NULL; /* not supported at the moment */
   130     }
   131 }
   134 const struct cpu_desc_struct sh4_cpu_desc = 
   135     { "SH4", sh4_disasm_instruction, sh4_get_register, sh4_has_page,
   136             sh4_debug_read_phys, sh4_debug_write_phys, sh4_debug_read_vma, sh4_debug_write_vma,
   137             sh4_execute_instruction, 
   138       sh4_set_breakpoint, sh4_clear_breakpoint, sh4_get_breakpoint, 2,
   139       (char *)&sh4r, sizeof(sh4r), sh4_reg_map, 23, 59,
   140       &sh4r.pc };
   142 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, 
   143         sh4_start, sh4_run_slice, sh4_stop,
   144         sh4_save_state, sh4_load_state };
   146 struct sh4_registers sh4r __attribute__((aligned(16)));
   147 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
   148 int sh4_breakpoint_count = 0;
   150 gboolean sh4_starting = FALSE;
   151 static gboolean sh4_use_translator = FALSE;
   152 static jmp_buf sh4_exit_jmp_buf;
   153 static gboolean sh4_running = FALSE;
   154 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
   156 /* At the moment this is a dummy event to mark the end of the
   157  * timeslice
   158  */
   159 void sh4_dummy_event(int eventid)
   160 {
   161 }
   163 void sh4_set_core( sh4core_t core )
   164 {
   165     // No-op if the translator was not built
   166 #ifdef SH4_TRANSLATOR
   167     if( core != SH4_INTERPRET ) {
   168         sh4_translate_init();
   169         sh4_use_translator = TRUE;
   170         if( core == SH4_SHADOW ) {
   171             sh4_shadow_init();
   172         }
   173     } else {
   174         sh4_use_translator = FALSE;
   175     }
   176 #endif
   177 }
   179 gboolean sh4_translate_is_enabled()
   180 {
   181     return sh4_use_translator;
   182 }
   184 void sh4_init(void)
   185 {
   186     register_io_regions( mmio_list_sh4mmio );
   187     register_event_callback( EVENT_ENDTIMESLICE, sh4_dummy_event );
   188     MMU_init();
   189     TMU_init();
   190     xlat_cache_init();
   191     sh4_poweron_reset();
   192 #ifdef ENABLE_SH4STATS
   193     sh4_stats_reset();
   194 #endif
   195 }
   197 void sh4_start(void)
   198 {
   199     sh4_starting = TRUE;
   200 }
   202 void sh4_poweron_reset(void)
   203 {
   204     /* zero everything out, for the sake of having a consistent state. */
   205     memset( &sh4r, 0, sizeof(sh4r) );
   206     if(	sh4_use_translator ) {
   207         xlat_flush_cache();
   208     }
   210     /* Resume running if we were halted */
   211     sh4r.sh4_state = SH4_STATE_RUNNING;
   213     sh4r.pc    = 0xA0000000;
   214     sh4r.new_pc= 0xA0000002;
   215     sh4r.vbr   = 0x00000000;
   216     sh4r.fpscr = 0x00040001;
   217     sh4_write_sr(0x700000F0);
   219     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   220     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   222     /* Peripheral modules */
   223     CPG_reset();
   224     INTC_reset();
   225     PMM_reset();
   226     TMU_reset();
   227     SCIF_reset();
   228     CCN_reset();
   229     MMU_reset();
   230 }
   232 void sh4_stop(void)
   233 {
   234     if(	sh4_use_translator ) {
   235         /* If we were running with the translator, update new_pc and in_delay_slot */
   236         sh4r.new_pc = sh4r.pc+2;
   237         sh4r.in_delay_slot = FALSE;
   238         if( sh4_translate_get_profile_blocks() ) {
   239             sh4_translate_dump_cache_by_activity(30);
   240         }
   241     }
   243 }
   245 /**
   246  * Execute a timeslice using translated code only (ie translate/execute loop)
   247  */
   248 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   249 {
   250     sh4r.slice_cycle = 0;
   252     /* Setup for sudden vm exits */
   253     switch( setjmp(sh4_exit_jmp_buf) ) {
   254     case CORE_EXIT_BREAKPOINT:
   255         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   256         /* fallthrough */
   257     case CORE_EXIT_HALT:
   258         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   259             TMU_run_slice( sh4r.slice_cycle );
   260             SCIF_run_slice( sh4r.slice_cycle );
   261             PMM_run_slice( sh4r.slice_cycle );
   262             dreamcast_stop();
   263             return sh4r.slice_cycle;
   264         }
   265     case CORE_EXIT_SYSRESET:
   266         dreamcast_reset();
   267         break;
   268     case CORE_EXIT_SLEEP:
   269         break;  
   270     case CORE_EXIT_FLUSH_ICACHE:
   271         xlat_flush_cache();
   272         break;
   273     }
   275     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   276         sh4_sleep_run_slice(nanosecs);
   277     } else {
   278         sh4_running = TRUE;
   280         /* Execute the core's real slice */
   281 #ifdef SH4_TRANSLATOR
   282         if( sh4_use_translator ) {
   283             sh4_translate_run_slice(nanosecs);
   284         } else {
   285             sh4_emulate_run_slice(nanosecs);
   286         }
   287 #else
   288         sh4_emulate_run_slice(nanosecs);
   289 #endif
   290     }
   292     /* And finish off the peripherals afterwards */
   294     sh4_running = FALSE;
   295     sh4_starting = FALSE;
   296     sh4r.slice_cycle = nanosecs;
   297     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   298         TMU_run_slice( nanosecs );
   299         SCIF_run_slice( nanosecs );
   300         PMM_run_slice( sh4r.slice_cycle );
   301     }
   302     return nanosecs;   
   303 }
   305 void sh4_core_exit( int exit_code )
   306 {
   307     if( sh4_running ) {
   308 #ifdef SH4_TRANSLATOR
   309         if( sh4_use_translator ) {
   310             if( exit_code == CORE_EXIT_EXCEPTION ) {
   311                 sh4_translate_exception_exit_recover();
   312             } else {
   313                 sh4_translate_exit_recover();
   314             }
   315         }
   316 #endif
   317         if( exit_code != CORE_EXIT_EXCEPTION &&
   318             exit_code != CORE_EXIT_BREAKPOINT ) {
   319             sh4_finalize_instruction();
   320         }
   321         // longjmp back into sh4_run_slice
   322         sh4_running = FALSE;
   323         longjmp(sh4_exit_jmp_buf, exit_code);
   324     }
   325 }
   327 void sh4_save_state( FILE *f )
   328 {
   329     if(	sh4_use_translator ) {
   330         /* If we were running with the translator, update new_pc and in_delay_slot */
   331         sh4r.new_pc = sh4r.pc+2;
   332         sh4r.in_delay_slot = FALSE;
   333     }
   335     fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   336     MMU_save_state( f );
   337     CCN_save_state( f );
   338     PMM_save_state( f );
   339     INTC_save_state( f );
   340     TMU_save_state( f );
   341     SCIF_save_state( f );
   342 }
   344 int sh4_load_state( FILE * f )
   345 {
   346     if(	sh4_use_translator ) {
   347         xlat_flush_cache();
   348     }
   349     fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   350     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   351     MMU_load_state( f );
   352     CCN_load_state( f );
   353     PMM_load_state( f );
   354     INTC_load_state( f );
   355     TMU_load_state( f );
   356     return SCIF_load_state( f );
   357 }
   359 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   360 {
   361     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   362     sh4_breakpoints[sh4_breakpoint_count].type = type;
   363     if( sh4_use_translator ) {
   364         xlat_invalidate_word( pc );
   365     }
   366     sh4_breakpoint_count++;
   367 }
   369 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   370 {
   371     int i;
   373     for( i=0; i<sh4_breakpoint_count; i++ ) {
   374         if( sh4_breakpoints[i].address == pc && 
   375                 sh4_breakpoints[i].type == type ) {
   376             while( ++i < sh4_breakpoint_count ) {
   377                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   378                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   379             }
   380             if( sh4_use_translator ) {
   381                 xlat_invalidate_word( pc );
   382             }
   383             sh4_breakpoint_count--;
   384             return TRUE;
   385         }
   386     }
   387     return FALSE;
   388 }
   390 int sh4_get_breakpoint( uint32_t pc )
   391 {
   392     int i;
   393     for( i=0; i<sh4_breakpoint_count; i++ ) {
   394         if( sh4_breakpoints[i].address == pc )
   395             return sh4_breakpoints[i].type;
   396     }
   397     return 0;
   398 }
   400 void sh4_set_pc( int pc )
   401 {
   402     sh4r.pc = pc;
   403     sh4r.new_pc = pc+2;
   404 }
   406 void sh4_set_event_pending( uint32_t cycles )
   407 {
   408     sh4r.event_pending = cycles;
   409 }
   411 /**
   412  * Dump all SH4 core information for crash-dump purposes
   413  */
   414 void sh4_crashdump()
   415 {
   416     cpu_print_registers( stderr, &sh4_cpu_desc );
   417 #ifdef SH4_TRANSLATOR
   418     if( sh4_use_translator ) {
   419         sh4_translate_crashdump();
   420     } /* Nothing really to print for emu core */
   421 #endif
   422 }
   425 /******************************* Support methods ***************************/
   427 static void sh4_switch_banks( )
   428 {
   429     uint32_t tmp[8];
   431     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   432     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   433     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   434 }
   436 void FASTCALL sh4_switch_fr_banks()
   437 {
   438     int i;
   439     for( i=0; i<16; i++ ) {
   440         float tmp = sh4r.fr[0][i];
   441         sh4r.fr[0][i] = sh4r.fr[1][i];
   442         sh4r.fr[1][i] = tmp;
   443     }
   444 }
   446 void FASTCALL sh4_write_sr( uint32_t newval )
   447 {
   448     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   449     int newbank = (newval&SR_MDRB) == SR_MDRB;
   450     if( oldbank != newbank )
   451         sh4_switch_banks();
   452     sh4r.sr = newval & SR_MASK;
   453     sh4r.t = (newval&SR_T) ? 1 : 0;
   454     sh4r.s = (newval&SR_S) ? 1 : 0;
   455     sh4r.m = (newval&SR_M) ? 1 : 0;
   456     sh4r.q = (newval&SR_Q) ? 1 : 0;
   457     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   458     intc_mask_changed();
   459 }
   461 void FASTCALL sh4_write_fpscr( uint32_t newval )
   462 {
   463     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   464         sh4_switch_fr_banks();
   465     }
   466     sh4r.fpscr = newval & FPSCR_MASK;
   467     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   468 }
   470 uint32_t FASTCALL sh4_read_sr( void )
   471 {
   472     /* synchronize sh4r.sr with the various bitflags */
   473     sh4r.sr &= SR_MQSTMASK;
   474     if( sh4r.t ) sh4r.sr |= SR_T;
   475     if( sh4r.s ) sh4r.sr |= SR_S;
   476     if( sh4r.m ) sh4r.sr |= SR_M;
   477     if( sh4r.q ) sh4r.sr |= SR_Q;
   478     return sh4r.sr;
   479 }
   481 /**
   482  * Raise a CPU reset exception with the specified exception code.
   483  */
   484 void FASTCALL sh4_raise_reset( int code )
   485 {
   486     MMIO_WRITE(MMU,EXPEVT,code);
   487     sh4r.vbr = 0x00000000;
   488     sh4r.pc = 0xA0000000;
   489     sh4r.new_pc = sh4r.pc + 2;
   490     sh4r.in_delay_slot = 0;
   491     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)&(~SR_FD) );
   493     /* Peripheral manual reset (FIXME: incomplete) */
   494     INTC_reset();
   495     SCIF_reset();
   496     MMU_reset();
   497 }
   499 void FASTCALL sh4_raise_tlb_multihit( sh4vma_t vpn )
   500 {
   501     MMIO_WRITE( MMU, TEA, vpn );
   502     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   503     sh4_raise_reset( EXC_TLB_MULTI_HIT );
   504 }
   506 /**
   507  * Raise a general CPU exception for the specified exception code.
   508  * (NOT for TRAPA or TLB exceptions)
   509  */
   510 void FASTCALL sh4_raise_exception( int code )
   511 {
   512     if( sh4r.sr & SR_BL ) {
   513         sh4_raise_reset( EXC_MANUAL_RESET );
   514     } else {
   515         sh4r.spc = sh4r.pc;
   516         sh4r.ssr = sh4_read_sr();
   517         sh4r.sgr = sh4r.r[15];
   518         MMIO_WRITE(MMU,EXPEVT, code);
   519         sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   520         sh4r.new_pc = sh4r.pc + 2;
   521         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   522         sh4r.in_delay_slot = 0;
   523     }
   524 }
   526 void FASTCALL sh4_raise_trap( int trap )
   527 {
   528     MMIO_WRITE( MMU, TRA, trap<<2 );
   529     MMIO_WRITE( MMU, EXPEVT, EXC_TRAP );
   530     sh4r.spc = sh4r.pc;
   531     sh4r.ssr = sh4_read_sr();
   532     sh4r.sgr = sh4r.r[15];
   533     sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   534     sh4r.new_pc = sh4r.pc + 2;
   535     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   536     sh4r.in_delay_slot = 0;
   537 }
   539 void FASTCALL sh4_raise_tlb_exception( int code, sh4vma_t vpn )
   540 {
   541     MMIO_WRITE( MMU, TEA, vpn );
   542     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   543     MMIO_WRITE( MMU, EXPEVT, code );
   544     sh4r.spc = sh4r.pc;
   545     sh4r.ssr = sh4_read_sr();
   546     sh4r.sgr = sh4r.r[15];
   547     sh4r.pc = sh4r.vbr + EXV_TLBMISS;
   548     sh4r.new_pc = sh4r.pc + 2;
   549     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   550     sh4r.in_delay_slot = 0;
   551 }
   553 void FASTCALL sh4_accept_interrupt( void )
   554 {
   555     uint32_t code = intc_accept_interrupt();
   556     MMIO_WRITE( MMU, INTEVT, code );
   557     sh4r.ssr = sh4_read_sr();
   558     sh4r.spc = sh4r.pc;
   559     sh4r.sgr = sh4r.r[15];
   560     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   561     sh4r.pc = sh4r.vbr + 0x600;
   562     sh4r.new_pc = sh4r.pc + 2;
   563     sh4r.in_delay_slot = 0;
   564 }
   566 void FASTCALL signsat48( void )
   567 {
   568     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   569         sh4r.mac = 0xFFFF800000000000LL;
   570     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   571         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   572 }
   574 void FASTCALL sh4_fsca( uint32_t anglei, float *fr )
   575 {
   576     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   577     *fr++ = cosf(angle);
   578     *fr = sinf(angle);
   579 }
   581 /**
   582  * Enter sleep mode (eg by executing a SLEEP instruction).
   583  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   584  * are up to date.
   585  */
   586 void FASTCALL sh4_sleep(void)
   587 {
   588     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   589         sh4r.sh4_state = SH4_STATE_STANDBY;
   590         /* Bring all running peripheral modules up to date, and then halt them. */
   591         TMU_run_slice( sh4r.slice_cycle );
   592         SCIF_run_slice( sh4r.slice_cycle );
   593         PMM_run_slice( sh4r.slice_cycle );
   594     } else {
   595         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   596             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   597             /* Halt DMAC but other peripherals still running */
   599         } else {
   600             sh4r.sh4_state = SH4_STATE_SLEEP;
   601         }
   602     }
   603     sh4_core_exit( CORE_EXIT_SLEEP );
   604 }
   606 /**
   607  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   608  * and restarts any peripheral devices that were stopped.
   609  */
   610 void sh4_wakeup(void)
   611 {
   612     switch( sh4r.sh4_state ) {
   613     case SH4_STATE_STANDBY:
   614         break;
   615     case SH4_STATE_DEEP_SLEEP:
   616         break;
   617     case SH4_STATE_SLEEP:
   618         break;
   619     }
   620     sh4r.sh4_state = SH4_STATE_RUNNING;
   621 }
   623 /**
   624  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   625  * Returns when either the SH4 wakes up (interrupt received) or the end of
   626  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   627  * returns the same value.
   628  */
   629 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   630 {
   631     assert( sh4r.sh4_state != SH4_STATE_RUNNING );
   633     while( sh4r.event_pending < nanosecs ) {
   634         sh4r.slice_cycle = sh4r.event_pending;
   635         if( sh4r.event_types & PENDING_EVENT ) {
   636             event_execute();
   637         }
   638         if( sh4r.event_types & PENDING_IRQ ) {
   639             sh4_wakeup();
   640             return sh4r.slice_cycle;
   641         }
   642     }
   643     if( sh4r.slice_cycle < nanosecs )
   644         sh4r.slice_cycle = nanosecs;
   645     return sh4r.slice_cycle;
   646 }
   649 /**
   650  * Compute the matrix tranform of fv given the matrix xf.
   651  * Both fv and xf are word-swapped as per the sh4r.fr banks
   652  */
   653 void FASTCALL sh4_ftrv( float *target )
   654 {
   655     float fv[4] = { target[1], target[0], target[3], target[2] };
   656     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   657     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   658     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   659     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   660     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   661     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   662     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   663     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   664 }
   666 gboolean sh4_has_page( sh4vma_t vma )
   667 {
   668     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   669     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   670 }
   672 void sh4_handle_pending_events() {
   673     if( sh4r.event_types & PENDING_EVENT ) {
   674         event_execute();
   675     }
   676     /* Eventq execute may (quite likely) deliver an immediate IRQ */
   677     if( sh4r.event_types & PENDING_IRQ ) {
   678         sh4_accept_interrupt();
   679     }
   680 }
   682 /**
   683  * Go through ext_address_space page by page
   684  */
   685 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length )
   686 {
   687     /* Quick and very dirty */
   688     unsigned char *region = mem_get_region(addr);
   689     if( region == NULL ) {
   690         memset( buf, 0, length );
   691     } else {
   692         memcpy( buf, region, length );
   693     }
   694     return length;
   695 }
   697 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length )
   698 {
   699     unsigned char *region = mem_get_region(addr);
   700     if( region != NULL ) {
   701         memcpy( region, buf, length );
   702     }
   703     return length;
   704 }
   706 /**
   707  * Read virtual memory - for now just go 1K at a time 
   708  */
   709 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length )
   710 {
   711     if( IS_TLB_ENABLED() ) {
   712         size_t read_len = 0;
   713         while( length > 0 ) {
   714             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   715             if( phys == MMU_VMA_ERROR )
   716                 break;
   717             int next_len = 1024 - (phys&0x000003FF);
   718             if( next_len >= length ) {
   719                 next_len = length;
   720             }
   721             sh4_debug_read_phys( buf, phys, length );
   722             buf += next_len;
   723             addr += next_len;
   724             read_len += next_len; 
   725             length -= next_len;
   726         }
   727         return read_len;
   728     } else {
   729         return sh4_debug_read_phys( buf, addr, length );
   730     }
   731 }
   733 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length )
   734 {
   735     if( IS_TLB_ENABLED() ) {
   736         size_t read_len = 0;
   737         while( length > 0 ) {
   738             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   739             if( phys == MMU_VMA_ERROR )
   740                 break;
   741             int next_len = 1024 - (phys&0x000003FF);
   742             if( next_len >= length ) {
   743                 next_len = length;
   744             }
   745             sh4_debug_write_phys( phys, buf, length );
   746             buf += next_len;
   747             addr += next_len;
   748             read_len += next_len; 
   749             length -= next_len;
   750         }
   751         return read_len;
   752     } else {
   753         return sh4_debug_write_phys( addr, buf, length );
   754     }
   755 }
.