Search
lxdream.org :: lxdream/src/sh4/timer.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/timer.c
changeset 859:b941c703ccd6
prev736:a02d1475ccfd
next929:fd8cb0c82f5f
author nkeynes
date Fri Oct 31 03:24:49 2008 +0000 (15 years ago)
permissions -rw-r--r--
last change Remove FASTCALL from mem_copy_*, not really helping atm (and sometimes hurting)
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 Timer/Clock peripheral modules (CPG, TMU, RTC), combined together to
     5  * keep things simple (they intertwine a bit).
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #include <assert.h>
    21 #include "lxdream.h"
    22 #include "mem.h"
    23 #include "clock.h"
    24 #include "eventq.h"
    25 #include "sh4/sh4core.h"
    26 #include "sh4/sh4mmio.h"
    27 #include "sh4/intc.h"
    29 /********************************* CPG *************************************/
    30 /* This is the base clock from which all other clocks are derived. 
    31  * Note: The real clock runs at 33Mhz, which is multiplied by the PLL to
    32  * run the instruction clock at 200Mhz. For sake of simplicity/precision,
    33  * we instead use 200Mhz as the base rate and divide everything down instead.
    34  **/
    35 uint32_t sh4_input_freq = SH4_BASE_RATE;
    37 uint32_t sh4_cpu_multiplier = 2000; /* = 0.5 * frequency */
    39 uint32_t sh4_cpu_freq = SH4_BASE_RATE;
    40 uint32_t sh4_bus_freq = SH4_BASE_RATE / 2;
    41 uint32_t sh4_peripheral_freq = SH4_BASE_RATE / 4;
    43 uint32_t sh4_cpu_period = 1000 / SH4_BASE_RATE; /* in nanoseconds */
    44 uint32_t sh4_bus_period = 2* 1000 / SH4_BASE_RATE;
    45 uint32_t sh4_peripheral_period = 4 * 2000 / SH4_BASE_RATE;
    47 int32_t mmio_region_CPG_read( uint32_t reg )
    48 {
    49     return MMIO_READ( CPG, reg );
    50 }
    52 /* CPU + bus dividers (note officially only the first 6 values are valid) */
    53 int ifc_divider[8] = { 1, 2, 3, 4, 5, 8, 8, 8 };
    54 /* Peripheral clock dividers (only first 5 are officially valid) */
    55 int pfc_divider[8] = { 2, 3, 4, 6, 8, 8, 8, 8 };
    57 void mmio_region_CPG_write( uint32_t reg, uint32_t val )
    58 {
    59     uint32_t div;
    60     uint32_t primary_clock = sh4_input_freq;
    62     switch( reg ) {
    63     case FRQCR: /* Frequency control */
    64         if( (val & FRQCR_PLL1EN) == 0 )
    65             primary_clock /= 6;
    66         div = ifc_divider[(val >> 6) & 0x07];
    67         sh4_cpu_freq = primary_clock / div;
    68         sh4_cpu_period = sh4_cpu_multiplier * div / sh4_input_freq;
    69         div = ifc_divider[(val >> 3) & 0x07];
    70         sh4_bus_freq = primary_clock / div;
    71         sh4_bus_period = 1000 * div / sh4_input_freq;
    72         div = pfc_divider[val & 0x07];
    73         sh4_peripheral_freq = primary_clock / div;
    74         sh4_peripheral_period = 1000 * div / sh4_input_freq;
    76         /* Update everything that depends on the peripheral frequency */
    77         SCIF_update_line_speed();
    78         break;
    79     case WTCSR: /* Watchdog timer */
    80         break;
    81     }
    83     MMIO_WRITE( CPG, reg, val );
    84 }
    86 /**
    87  * We don't really know what the default reset value is as it's determined
    88  * by the mode select pins. This is the standard value that the BIOS sets,
    89  * however, so it works for now.
    90  */
    91 void CPG_reset( )
    92 {
    93     mmio_region_CPG_write( FRQCR, 0x0E0A );
    94 }
    97 /********************************** RTC *************************************/
    99 uint32_t rtc_output_period;
   101 int32_t mmio_region_RTC_read( uint32_t reg )
   102 {
   103     return MMIO_READ( RTC, reg );
   104 }
   106 void mmio_region_RTC_write( uint32_t reg, uint32_t val )
   107 {
   108     MMIO_WRITE( RTC, reg, val );
   109 }
   111 /********************************** TMU *************************************/
   113 #define TMU_IS_RUNNING(timer)  (MMIO_READ(TMU,TSTR) & (1<<timer))
   115 uint32_t TMU_count( int timer, uint32_t nanosecs );
   117 void TMU_event_callback( int eventid )
   118 {
   119     TMU_count( eventid - EVENT_TMU0, sh4r.slice_cycle );
   120 }
   122 void TMU_init(void)
   123 {
   124     register_event_callback( EVENT_TMU0, TMU_event_callback );
   125     register_event_callback( EVENT_TMU1, TMU_event_callback );
   126     register_event_callback( EVENT_TMU2, TMU_event_callback );
   127 }    
   129 #define TCR_ICPF 0x0200
   130 #define TCR_UNF  0x0100
   131 #define TCR_UNIE 0x0020
   133 #define TCR_IRQ_ACTIVE (TCR_UNF|TCR_UNIE)
   135 struct TMU_timer {
   136     uint32_t timer_period;
   137     uint32_t timer_remainder; /* left-over cycles from last count */
   138     uint32_t timer_run; /* cycles already run from this slice */
   139 };
   141 static struct TMU_timer TMU_timers[3];
   143 int32_t mmio_region_TMU_read( uint32_t reg )
   144 {
   145     switch( reg ) {
   146     case TCNT0:
   147         TMU_count( 0, sh4r.slice_cycle );
   148         break;
   149     case TCNT1:
   150         TMU_count( 1, sh4r.slice_cycle );
   151         break;
   152     case TCNT2:
   153         TMU_count( 2, sh4r.slice_cycle );
   154         break;
   155     }
   156     return MMIO_READ( TMU, reg );
   157 }
   159 void TMU_set_timer_control( int timer,  int tcr )
   160 {
   161     uint32_t period = 1;
   162     uint32_t oldtcr = MMIO_READ( TMU, TCR0 + (12*timer) );
   164     if( (oldtcr & TCR_UNF) == 0 ) {
   165         tcr = tcr & (~TCR_UNF);
   166     } else {
   167         if( ((oldtcr & TCR_UNIE) == 0) && 
   168                 (tcr & TCR_IRQ_ACTIVE) == TCR_IRQ_ACTIVE ) {
   169             intc_raise_interrupt( INT_TMU_TUNI0 + timer );
   170         } else if( (oldtcr & TCR_UNIE) != 0 && 
   171                 (tcr & TCR_IRQ_ACTIVE) != TCR_IRQ_ACTIVE ) {
   172             intc_clear_interrupt( INT_TMU_TUNI0 + timer );
   173         }
   174     }
   176     switch( tcr & 0x07 ) {
   177     case 0:
   178         period = sh4_peripheral_period << 2 ;
   179         break;
   180     case 1: 
   181         period = sh4_peripheral_period << 4;
   182         break;
   183     case 2:
   184         period = sh4_peripheral_period << 6;
   185         break;
   186     case 3: 
   187         period = sh4_peripheral_period << 8;
   188         break;
   189     case 4:
   190         period = sh4_peripheral_period << 10;
   191         break;
   192     case 5:
   193         /* Illegal value. */
   194         ERROR( "TMU %d period set to illegal value (5)", timer );
   195         period = sh4_peripheral_period << 12; /* for something to do */
   196         break;
   197     case 6:
   198         period = rtc_output_period;
   199         break;
   200     case 7:
   201         /* External clock... Hrm? */
   202         period = sh4_peripheral_period; /* I dunno... */
   203         break;
   204     }
   205     TMU_timers[timer].timer_period = period;
   207     MMIO_WRITE( TMU, TCR0 + (12*timer), tcr );
   208 }
   210 void TMU_schedule_timer( int timer )
   211 {
   212     uint64_t duration = (uint64_t)((uint32_t)(MMIO_READ( TMU, TCNT0 + 12*timer )+1)) * 
   213     (uint64_t)TMU_timers[timer].timer_period - TMU_timers[timer].timer_remainder;
   214     event_schedule_long( EVENT_TMU0+timer, (uint32_t)(duration / 1000000000), 
   215                          (uint32_t)(duration % 1000000000) );
   216 }
   218 void TMU_start( int timer )
   219 {
   220     TMU_timers[timer].timer_run = sh4r.slice_cycle;
   221     TMU_timers[timer].timer_remainder = 0;
   222     TMU_schedule_timer( timer );
   223 }
   225 /**
   226  * Stop the given timer. Run it up to the current time and leave it there.
   227  */
   228 void TMU_stop( int timer )
   229 {
   230     TMU_count( timer, sh4r.slice_cycle );
   231     event_cancel( EVENT_TMU0+timer );
   232 }
   234 /**
   235  * Count the specified timer for a given number of nanoseconds.
   236  */
   237 uint32_t TMU_count( int timer, uint32_t nanosecs ) 
   238 {
   239     uint32_t run_ns = nanosecs + TMU_timers[timer].timer_remainder -
   240     TMU_timers[timer].timer_run;
   241     TMU_timers[timer].timer_remainder = 
   242         run_ns % TMU_timers[timer].timer_period;
   243     TMU_timers[timer].timer_run = nanosecs;
   244     uint32_t count = run_ns / TMU_timers[timer].timer_period;
   245     uint32_t value = MMIO_READ( TMU, TCNT0 + 12*timer );
   246     uint32_t reset = MMIO_READ( TMU, TCOR0 + 12*timer );
   247     if( count > value ) {
   248         uint32_t tcr = MMIO_READ( TMU, TCR0 + 12*timer );
   249         tcr |= TCR_UNF;
   250         count -= value;
   251         value = reset - (count % reset) + 1;
   252         MMIO_WRITE( TMU, TCR0 + 12*timer, tcr );
   253         if( tcr & TCR_UNIE ) 
   254             intc_raise_interrupt( INT_TMU_TUNI0 + timer );
   255         MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
   256         TMU_schedule_timer(timer);
   257     } else {
   258         value -= count;
   259         MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
   260     }
   261     return value;
   262 }
   264 void mmio_region_TMU_write( uint32_t reg, uint32_t val )
   265 {
   266     uint32_t oldval;
   267     int i;
   268     switch( reg ) {
   269     case TSTR:
   270         oldval = MMIO_READ( TMU, TSTR );
   271         for( i=0; i<3; i++ ) {
   272             uint32_t tmp = 1<<i;
   273             if( (oldval & tmp) != 0 && (val&tmp) == 0  )
   274                 TMU_stop(i);
   275             else if( (oldval&tmp) == 0 && (val&tmp) != 0 )
   276                 TMU_start(i);
   277         }
   278         break;
   279     case TCR0:
   280         TMU_set_timer_control( 0, val );
   281         return;
   282     case TCR1:
   283         TMU_set_timer_control( 1, val );
   284         return;
   285     case TCR2:
   286         TMU_set_timer_control( 2, val );
   287         return;
   288     case TCNT0:
   289         MMIO_WRITE( TMU, reg, val );
   290         if( TMU_IS_RUNNING(0) ) { // reschedule
   291             TMU_timers[0].timer_run = sh4r.slice_cycle;
   292             TMU_schedule_timer( 0 );
   293         }
   294         return;
   295     case TCNT1:
   296         MMIO_WRITE( TMU, reg, val );
   297         if( TMU_IS_RUNNING(1) ) { // reschedule
   298             TMU_timers[1].timer_run = sh4r.slice_cycle;
   299             TMU_schedule_timer( 1 );
   300         }
   301         return;
   302     case TCNT2:
   303         MMIO_WRITE( TMU, reg, val );
   304         if( TMU_IS_RUNNING(2) ) { // reschedule
   305             TMU_timers[2].timer_run = sh4r.slice_cycle;
   306             TMU_schedule_timer( 2 );
   307         }
   308         return;
   309     }
   310     MMIO_WRITE( TMU, reg, val );
   311 }
   313 void TMU_count_all( uint32_t nanosecs )
   314 {
   315     int tcr = MMIO_READ( TMU, TSTR );
   316     if( tcr & 0x01 ) {
   317         TMU_count( 0, nanosecs );
   318     }
   319     if( tcr & 0x02 ) {
   320         TMU_count( 1, nanosecs );
   321     }
   322     if( tcr & 0x04 ) {
   323         TMU_count( 2, nanosecs );
   324     }
   325 }
   327 void TMU_run_slice( uint32_t nanosecs )
   328 {
   329     TMU_count_all( nanosecs );
   330     TMU_timers[0].timer_run = 0;
   331     TMU_timers[1].timer_run = 0;
   332     TMU_timers[2].timer_run = 0;
   333 }
   335 void TMU_update_clocks()
   336 {
   337     TMU_set_timer_control( 0, MMIO_READ( TMU, TCR0 ) );
   338     TMU_set_timer_control( 1, MMIO_READ( TMU, TCR1 ) );
   339     TMU_set_timer_control( 2, MMIO_READ( TMU, TCR2 ) );
   340 }
   342 void TMU_reset( )
   343 {
   344     TMU_timers[0].timer_remainder = 0;
   345     TMU_timers[0].timer_run = 0;
   346     TMU_timers[1].timer_remainder = 0;
   347     TMU_timers[1].timer_run = 0;
   348     TMU_timers[2].timer_remainder = 0;
   349     TMU_timers[2].timer_run = 0;
   350     TMU_update_clocks();
   351 }
   353 void TMU_save_state( FILE *f ) {
   354     fwrite( &TMU_timers, sizeof(TMU_timers), 1, f );
   355 }
   357 int TMU_load_state( FILE *f ) 
   358 {
   359     fread( &TMU_timers, sizeof(TMU_timers), 1, f );
   360     return 0;
   361 }
.