Search
lxdream.org :: lxdream/src/sh4/timer.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/timer.c
changeset 975:007bf7eb944f
prev929:fd8cb0c82f5f
next1124:aacaae9812ea
author nkeynes
date Mon Dec 21 08:23:54 2009 +1000 (14 years ago)
permissions -rw-r--r--
last change Fix symbol output in 64-bit disassembly
Add sh4_translate_dump_block(pc) function
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 Timer/Clock peripheral modules (CPG, TMU, RTC), combined together to
     5  * keep things simple (they intertwine a bit).
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #include <assert.h>
    21 #include "lxdream.h"
    22 #include "mem.h"
    23 #include "clock.h"
    24 #include "eventq.h"
    25 #include "sh4/sh4core.h"
    26 #include "sh4/sh4mmio.h"
    27 #include "sh4/intc.h"
    29 /********************************* CPG *************************************/
    30 /* This is the base clock from which all other clocks are derived. 
    31  * Note: The real clock runs at 33Mhz, which is multiplied by the PLL to
    32  * run the instruction clock at 200Mhz. For sake of simplicity/precision,
    33  * we instead use 200Mhz as the base rate and divide everything down instead.
    34  **/
    35 uint32_t sh4_input_freq = SH4_BASE_RATE;
    37 uint32_t sh4_cpu_multiplier = 2000; /* = 0.5 * frequency */
    39 uint32_t sh4_cpu_freq = SH4_BASE_RATE;
    40 uint32_t sh4_bus_freq = SH4_BASE_RATE / 2;
    41 uint32_t sh4_peripheral_freq = SH4_BASE_RATE / 4;
    43 uint32_t sh4_cpu_period = 1000 / SH4_BASE_RATE; /* in nanoseconds */
    44 uint32_t sh4_bus_period = 2* 1000 / SH4_BASE_RATE;
    45 uint32_t sh4_peripheral_period = 4 * 2000 / SH4_BASE_RATE;
    47 MMIO_REGION_READ_FN( CPG, reg )
    48 {
    49     return MMIO_READ( CPG, reg&0xFFF );
    50 }
    51 MMIO_REGION_READ_DEFSUBFNS(CPG)
    53 /* CPU + bus dividers (note officially only the first 6 values are valid) */
    54 int ifc_divider[8] = { 1, 2, 3, 4, 5, 8, 8, 8 };
    55 /* Peripheral clock dividers (only first 5 are officially valid) */
    56 int pfc_divider[8] = { 2, 3, 4, 6, 8, 8, 8, 8 };
    58 MMIO_REGION_WRITE_FN( CPG, reg, val )
    59 {
    60     uint32_t div;
    61     uint32_t primary_clock = sh4_input_freq;
    62     reg &= 0xFFF;
    63     switch( reg ) {
    64     case FRQCR: /* Frequency control */
    65         if( (val & FRQCR_PLL1EN) == 0 )
    66             primary_clock /= 6;
    67         div = ifc_divider[(val >> 6) & 0x07];
    68         sh4_cpu_freq = primary_clock / div;
    69         sh4_cpu_period = sh4_cpu_multiplier * div / sh4_input_freq;
    70         div = ifc_divider[(val >> 3) & 0x07];
    71         sh4_bus_freq = primary_clock / div;
    72         sh4_bus_period = 1000 * div / sh4_input_freq;
    73         div = pfc_divider[val & 0x07];
    74         sh4_peripheral_freq = primary_clock / div;
    75         sh4_peripheral_period = 1000 * div / sh4_input_freq;
    77         /* Update everything that depends on the peripheral frequency */
    78         SCIF_update_line_speed();
    79         break;
    80     case WTCSR: /* Watchdog timer */
    81         break;
    82     }
    84     MMIO_WRITE( CPG, reg, val );
    85 }
    87 /**
    88  * We don't really know what the default reset value is as it's determined
    89  * by the mode select pins. This is the standard value that the BIOS sets,
    90  * however, so it works for now.
    91  */
    92 void CPG_reset( )
    93 {
    94     mmio_region_CPG_write( FRQCR, 0x0E0A );
    95 }
    98 /********************************** RTC *************************************/
   100 uint32_t rtc_output_period;
   102 MMIO_REGION_READ_FN( RTC, reg )
   103 {
   104     return MMIO_READ( RTC, reg &0xFFF );
   105 }
   106 MMIO_REGION_READ_DEFSUBFNS(RTC)
   108 MMIO_REGION_WRITE_FN( RTC, reg, val )
   109 {
   110     MMIO_WRITE( RTC, reg &0xFFF, val );
   111 }
   113 /********************************** TMU *************************************/
   115 #define TMU_IS_RUNNING(timer)  (MMIO_READ(TMU,TSTR) & (1<<timer))
   117 uint32_t TMU_count( int timer, uint32_t nanosecs );
   119 void TMU_event_callback( int eventid )
   120 {
   121     TMU_count( eventid - EVENT_TMU0, sh4r.slice_cycle );
   122 }
   124 void TMU_init(void)
   125 {
   126     register_event_callback( EVENT_TMU0, TMU_event_callback );
   127     register_event_callback( EVENT_TMU1, TMU_event_callback );
   128     register_event_callback( EVENT_TMU2, TMU_event_callback );
   129 }    
   131 #define TCR_ICPF 0x0200
   132 #define TCR_UNF  0x0100
   133 #define TCR_UNIE 0x0020
   135 #define TCR_IRQ_ACTIVE (TCR_UNF|TCR_UNIE)
   137 struct TMU_timer {
   138     uint32_t timer_period;
   139     uint32_t timer_remainder; /* left-over cycles from last count */
   140     uint32_t timer_run; /* cycles already run from this slice */
   141 };
   143 static struct TMU_timer TMU_timers[3];
   145 void TMU_set_timer_control( int timer,  int tcr )
   146 {
   147     uint32_t period = 1;
   148     uint32_t oldtcr = MMIO_READ( TMU, TCR0 + (12*timer) );
   150     if( (oldtcr & TCR_UNF) == 0 ) {
   151         tcr = tcr & (~TCR_UNF);
   152     } else {
   153         if( ((oldtcr & TCR_UNIE) == 0) && 
   154                 (tcr & TCR_IRQ_ACTIVE) == TCR_IRQ_ACTIVE ) {
   155             intc_raise_interrupt( INT_TMU_TUNI0 + timer );
   156         } else if( (oldtcr & TCR_UNIE) != 0 && 
   157                 (tcr & TCR_IRQ_ACTIVE) != TCR_IRQ_ACTIVE ) {
   158             intc_clear_interrupt( INT_TMU_TUNI0 + timer );
   159         }
   160     }
   162     switch( tcr & 0x07 ) {
   163     case 0:
   164         period = sh4_peripheral_period << 2 ;
   165         break;
   166     case 1: 
   167         period = sh4_peripheral_period << 4;
   168         break;
   169     case 2:
   170         period = sh4_peripheral_period << 6;
   171         break;
   172     case 3: 
   173         period = sh4_peripheral_period << 8;
   174         break;
   175     case 4:
   176         period = sh4_peripheral_period << 10;
   177         break;
   178     case 5:
   179         /* Illegal value. */
   180         ERROR( "TMU %d period set to illegal value (5)", timer );
   181         period = sh4_peripheral_period << 12; /* for something to do */
   182         break;
   183     case 6:
   184         period = rtc_output_period;
   185         break;
   186     case 7:
   187         /* External clock... Hrm? */
   188         period = sh4_peripheral_period; /* I dunno... */
   189         break;
   190     }
   191     TMU_timers[timer].timer_period = period;
   193     MMIO_WRITE( TMU, TCR0 + (12*timer), tcr );
   194 }
   196 void TMU_schedule_timer( int timer )
   197 {
   198     uint64_t duration = (uint64_t)((uint32_t)(MMIO_READ( TMU, TCNT0 + 12*timer )+1)) * 
   199     (uint64_t)TMU_timers[timer].timer_period - TMU_timers[timer].timer_remainder;
   200     event_schedule_long( EVENT_TMU0+timer, (uint32_t)(duration / 1000000000), 
   201                          (uint32_t)(duration % 1000000000) );
   202 }
   204 void TMU_start( int timer )
   205 {
   206     TMU_timers[timer].timer_run = sh4r.slice_cycle;
   207     TMU_timers[timer].timer_remainder = 0;
   208     TMU_schedule_timer( timer );
   209 }
   211 /**
   212  * Stop the given timer. Run it up to the current time and leave it there.
   213  */
   214 void TMU_stop( int timer )
   215 {
   216     TMU_count( timer, sh4r.slice_cycle );
   217     event_cancel( EVENT_TMU0+timer );
   218 }
   220 /**
   221  * Count the specified timer for a given number of nanoseconds.
   222  */
   223 uint32_t TMU_count( int timer, uint32_t nanosecs ) 
   224 {
   225     uint32_t run_ns = nanosecs + TMU_timers[timer].timer_remainder -
   226     TMU_timers[timer].timer_run;
   227     TMU_timers[timer].timer_remainder = 
   228         run_ns % TMU_timers[timer].timer_period;
   229     TMU_timers[timer].timer_run = nanosecs;
   230     uint32_t count = run_ns / TMU_timers[timer].timer_period;
   231     uint32_t value = MMIO_READ( TMU, TCNT0 + 12*timer );
   232     uint32_t reset = MMIO_READ( TMU, TCOR0 + 12*timer );
   233     if( count > value ) {
   234         uint32_t tcr = MMIO_READ( TMU, TCR0 + 12*timer );
   235         tcr |= TCR_UNF;
   236         count -= value;
   237         value = reset - (count % reset) + 1;
   238         MMIO_WRITE( TMU, TCR0 + 12*timer, tcr );
   239         if( tcr & TCR_UNIE ) 
   240             intc_raise_interrupt( INT_TMU_TUNI0 + timer );
   241         MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
   242         TMU_schedule_timer(timer);
   243     } else {
   244         value -= count;
   245         MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
   246     }
   247     return value;
   248 }
   250 MMIO_REGION_READ_FN( TMU, reg )
   251 {
   252     reg &= 0xFFF;
   253     switch( reg ) {
   254     case TCNT0:
   255         TMU_count( 0, sh4r.slice_cycle );
   256         break;
   257     case TCNT1:
   258         TMU_count( 1, sh4r.slice_cycle );
   259         break;
   260     case TCNT2:
   261         TMU_count( 2, sh4r.slice_cycle );
   262         break;
   263     }
   264     return MMIO_READ( TMU, reg );
   265 }
   266 MMIO_REGION_READ_DEFSUBFNS(TMU)
   269 MMIO_REGION_WRITE_FN( TMU, reg, val )
   270 {
   271     uint32_t oldval;
   272     int i;
   273     reg &= 0xFFF;
   274     switch( reg ) {
   275     case TSTR:
   276         oldval = MMIO_READ( TMU, TSTR );
   277         for( i=0; i<3; i++ ) {
   278             uint32_t tmp = 1<<i;
   279             if( (oldval & tmp) != 0 && (val&tmp) == 0  )
   280                 TMU_stop(i);
   281             else if( (oldval&tmp) == 0 && (val&tmp) != 0 )
   282                 TMU_start(i);
   283         }
   284         break;
   285     case TCR0:
   286         TMU_set_timer_control( 0, val );
   287         return;
   288     case TCR1:
   289         TMU_set_timer_control( 1, val );
   290         return;
   291     case TCR2:
   292         TMU_set_timer_control( 2, val );
   293         return;
   294     case TCNT0:
   295         MMIO_WRITE( TMU, reg, val );
   296         if( TMU_IS_RUNNING(0) ) { // reschedule
   297             TMU_timers[0].timer_run = sh4r.slice_cycle;
   298             TMU_schedule_timer( 0 );
   299         }
   300         return;
   301     case TCNT1:
   302         MMIO_WRITE( TMU, reg, val );
   303         if( TMU_IS_RUNNING(1) ) { // reschedule
   304             TMU_timers[1].timer_run = sh4r.slice_cycle;
   305             TMU_schedule_timer( 1 );
   306         }
   307         return;
   308     case TCNT2:
   309         MMIO_WRITE( TMU, reg, val );
   310         if( TMU_IS_RUNNING(2) ) { // reschedule
   311             TMU_timers[2].timer_run = sh4r.slice_cycle;
   312             TMU_schedule_timer( 2 );
   313         }
   314         return;
   315     }
   316     MMIO_WRITE( TMU, reg, val );
   317 }
   319 void TMU_count_all( uint32_t nanosecs )
   320 {
   321     int tcr = MMIO_READ( TMU, TSTR );
   322     if( tcr & 0x01 ) {
   323         TMU_count( 0, nanosecs );
   324     }
   325     if( tcr & 0x02 ) {
   326         TMU_count( 1, nanosecs );
   327     }
   328     if( tcr & 0x04 ) {
   329         TMU_count( 2, nanosecs );
   330     }
   331 }
   333 void TMU_run_slice( uint32_t nanosecs )
   334 {
   335     TMU_count_all( nanosecs );
   336     TMU_timers[0].timer_run = 0;
   337     TMU_timers[1].timer_run = 0;
   338     TMU_timers[2].timer_run = 0;
   339 }
   341 void TMU_update_clocks()
   342 {
   343     TMU_set_timer_control( 0, MMIO_READ( TMU, TCR0 ) );
   344     TMU_set_timer_control( 1, MMIO_READ( TMU, TCR1 ) );
   345     TMU_set_timer_control( 2, MMIO_READ( TMU, TCR2 ) );
   346 }
   348 void TMU_reset( )
   349 {
   350     TMU_timers[0].timer_remainder = 0;
   351     TMU_timers[0].timer_run = 0;
   352     TMU_timers[1].timer_remainder = 0;
   353     TMU_timers[1].timer_run = 0;
   354     TMU_timers[2].timer_remainder = 0;
   355     TMU_timers[2].timer_run = 0;
   356     TMU_update_clocks();
   357 }
   359 void TMU_save_state( FILE *f ) {
   360     fwrite( &TMU_timers, sizeof(TMU_timers), 1, f );
   361 }
   363 int TMU_load_state( FILE *f ) 
   364 {
   365     fread( &TMU_timers, sizeof(TMU_timers), 1, f );
   366     return 0;
   367 }
.