Search
lxdream.org :: lxdream/src/pvr2/rendcore.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/pvr2/rendcore.c
changeset 477:9a373f2ff009
prev429:e581b90c3fb3
next540:a3767018a96d
author nkeynes
date Wed Nov 14 10:23:28 2007 +0000 (16 years ago)
permissions -rw-r--r--
last change Fix validation of render buffer count when loading save state
view annotate diff log raw
     1 /**
     2  * $Id: rendcore.c,v 1.21 2007-10-31 09:10:23 nkeynes Exp $
     3  *
     4  * PVR2 renderer core.
     5  *
     6  * Copyright (c) 2005 Nathan Keynes.
     7  *
     8  * This program is free software; you can redistribute it and/or modify
     9  * it under the terms of the GNU General Public License as published by
    10  * the Free Software Foundation; either version 2 of the License, or
    11  * (at your option) any later version.
    12  *
    13  * This program is distributed in the hope that it will be useful,
    14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    16  * GNU General Public License for more details.
    17  */
    18 #include <sys/time.h>
    19 #include "pvr2/pvr2.h"
    20 #include "asic.h"
    22 #define GL_GLEXT_PROTOTYPES 1
    23 #include <GL/gl.h>
    24 #include <GL/glext.h>
    26 int pvr2_poly_depthmode[8] = { GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL,
    27 				      GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, 
    28 				      GL_ALWAYS };
    29 int pvr2_poly_srcblend[8] = { 
    30     GL_ZERO, GL_ONE, GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR,
    31     GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA, 
    32     GL_ONE_MINUS_DST_ALPHA };
    33 int pvr2_poly_dstblend[8] = {
    34     GL_ZERO, GL_ONE, GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
    35     GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
    36     GL_ONE_MINUS_DST_ALPHA };
    37 int pvr2_poly_texblend[4] = {
    38     GL_REPLACE, 
    39     GL_MODULATE,  
    40     GL_DECAL, 
    41     GL_MODULATE 
    42 };
    43 int pvr2_render_colour_format[8] = {
    44     COLFMT_BGRA1555, COLFMT_RGB565, COLFMT_BGRA4444, COLFMT_BGRA1555,
    45     COLFMT_BGR888, COLFMT_BGRA8888, COLFMT_BGRA8888, COLFMT_BGRA4444 };
    48 #define CULL_NONE 0
    49 #define CULL_SMALL 1
    50 #define CULL_CCW 2
    51 #define CULL_CW 3
    53 #define SEGMENT_END         0x80000000
    54 #define SEGMENT_ZCLEAR      0x40000000
    55 #define SEGMENT_SORT_TRANS  0x20000000
    56 #define SEGMENT_START       0x10000000
    57 #define SEGMENT_X(c)        (((c) >> 2) & 0x3F)
    58 #define SEGMENT_Y(c)        (((c) >> 8) & 0x3F)
    59 #define NO_POINTER          0x80000000
    61 extern char *video_base;
    63 gboolean pvr2_force_fragment_alpha = FALSE;
    64 gboolean pvr2_debug_render = FALSE;
    66 struct tile_segment {
    67     uint32_t control;
    68     pvraddr_t opaque_ptr;
    69     pvraddr_t opaquemod_ptr;
    70     pvraddr_t trans_ptr;
    71     pvraddr_t transmod_ptr;
    72     pvraddr_t punchout_ptr;
    73 };
    75 void render_print_tilelist( FILE *f, uint32_t tile_entry );
    77 /**
    78  * Convert a half-float (16-bit) FP number to a regular 32-bit float.
    79  * Source is 1-bit sign, 5-bit exponent, 10-bit mantissa.
    80  * TODO: Check the correctness of this.
    81  */
    82 float halftofloat( uint16_t half )
    83 {
    84     union {
    85         float f;
    86         uint32_t i;
    87     } temp;
    88     /* int e = ((half & 0x7C00) >> 10) - 15 + 127;
    90     temp.i = ((half & 0x8000) << 16) | (e << 23) |
    91     ((half & 0x03FF) << 13); */
    92     temp.i = ((uint32_t)half)<<16;
    93     return temp.f;
    94 }
    97 /**
    98  * Setup the GL context for the supplied polygon context.
    99  * @param context pointer to 3 or 5 words of polygon context
   100  * @param modified boolean flag indicating that the modified
   101  *  version should be used, rather than the normal version.
   102  */
   103 void render_set_context( uint32_t *context, int render_mode )
   104 {
   105     uint32_t poly1 = context[0], poly2, texture;
   106     if( render_mode == RENDER_FULLMOD ) {
   107 	poly2 = context[3];
   108 	texture = context[4];
   109     } else {
   110 	poly2 = context[1];
   111 	texture = context[2];
   112     }
   114     if( POLY1_DEPTH_ENABLE(poly1) ) {
   115 	glEnable( GL_DEPTH_TEST );
   116 	glDepthFunc( POLY1_DEPTH_MODE(poly1) );
   117     } else {
   118 	glDisable( GL_DEPTH_TEST );
   119     }
   121     switch( POLY1_CULL_MODE(poly1) ) {
   122     case CULL_NONE:
   123     case CULL_SMALL:
   124 	glDisable( GL_CULL_FACE );
   125 	break;
   126     case CULL_CCW:
   127 	glEnable( GL_CULL_FACE );
   128 	glFrontFace( GL_CW );
   129 	break;
   130     case CULL_CW:
   131 	glEnable( GL_CULL_FACE );
   132 	glFrontFace( GL_CCW );
   133 	break;
   134     }
   136     if( POLY1_SPECULAR(poly1) ) {
   137 	glEnable(GL_COLOR_SUM);
   138     } else {
   139 	glDisable(GL_COLOR_SUM);
   140     }
   142     pvr2_force_fragment_alpha = POLY2_ALPHA_ENABLE(poly2) ? FALSE : TRUE;
   144     if( POLY1_TEXTURED(poly1) ) {
   145 	int width = POLY2_TEX_WIDTH(poly2);
   146 	int height = POLY2_TEX_HEIGHT(poly2);
   147 	glEnable(GL_TEXTURE_2D);
   148 	texcache_get_texture( (texture&0x000FFFFF)<<3, width, height, texture );
   149 	switch( POLY2_TEX_BLEND(poly2) ) {
   150 	case 0: /* Replace */
   151 	    glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
   152 	    break;
   153 	case 2:/* Decal */
   154 	    glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL );
   155 	    break;
   156 	case 1: /* Modulate RGB */
   157 	    /* This is not directly supported by opengl (other than by mucking
   158 	     * with the texture format), but we get the same effect by forcing
   159 	     * the fragment alpha to 1.0 and using GL_MODULATE.
   160 	     */
   161 	    pvr2_force_fragment_alpha = TRUE;
   162 	case 3: /* Modulate RGBA */
   163 	    glTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
   164 	    break;
   165 	}
   167 	if( POLY2_TEX_CLAMP_U(poly2) ) {
   168 	    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP );
   169 	} else {
   170 	    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
   171 	}	    
   172 	if( POLY2_TEX_CLAMP_V(poly2) ) {
   173 	    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP );
   174 	} else {
   175 	    glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
   176 	}
   177     } else {
   178 	glDisable( GL_TEXTURE_2D );
   179     }
   181     glShadeModel( POLY1_SHADE_MODEL(poly1) );
   183     int srcblend = POLY2_SRC_BLEND(poly2);
   184     int destblend = POLY2_DEST_BLEND(poly2);
   185     glBlendFunc( srcblend, destblend );
   187     if( POLY2_SRC_BLEND_TARGET(poly2) || POLY2_DEST_BLEND_TARGET(poly2) ) {
   188 	ERROR( "Accumulation buffer not supported" );
   189     }
   192 }
   194 #define FARGB_A(x) (((float)(((x)>>24)+1))/256.0)
   195 #define FARGB_R(x) (((float)((((x)>>16)&0xFF)+1))/256.0)
   196 #define FARGB_G(x) (((float)((((x)>>8)&0xFF)+1))/256.0)
   197 #define FARGB_B(x) (((float)(((x)&0xFF)+1))/256.0)
   199 void render_unpack_vertexes( struct vertex_unpacked *out, uint32_t poly1, 
   200 			     uint32_t *vertexes, int num_vertexes,
   201 			     int vertex_size, int render_mode )
   202 {
   203     int m = 0, i;
   204     if( render_mode == RENDER_FULLMOD ) {
   205 	m = (vertex_size - 3)/2;
   206     }
   208     for( i=0; i<num_vertexes; i++ ) {
   209 	float *vertexf = (float *)vertexes;
   210 	int k = m + 3;
   211 	out[i].x = vertexf[0];
   212 	out[i].y = vertexf[1];
   213 	out[i].z = vertexf[2];
   214     	if( POLY1_TEXTURED(poly1) ) {
   215 	    if( POLY1_UV16(poly1) ) {
   216 		out[i].u = halftofloat(vertexes[k]>>16);
   217 		out[i].v = halftofloat(vertexes[k]);
   218 		k++;
   219 	    } else {
   220 		out[i].u = vertexf[k];
   221 		out[i].v = vertexf[k+1];
   222 		k+=2;
   223 	    }
   224 	} else {
   225 	    out[i].u = 0;
   226 	    out[i].v = 0;
   227 	}
   228 	uint32_t argb = vertexes[k++];
   229 	out[i].rgba[0] = FARGB_R(argb);
   230 	out[i].rgba[1] = FARGB_G(argb);
   231         out[i].rgba[2] = FARGB_B(argb);
   232 	out[i].rgba[3] = FARGB_A(argb);
   233 	if( POLY1_SPECULAR(poly1) ) {
   234 	    uint32_t offset = vertexes[k++];
   235 	    out[i].offset_rgba[0] = FARGB_R(offset);
   236 	    out[i].offset_rgba[1] = FARGB_G(offset);
   237 	    out[i].offset_rgba[2] = FARGB_B(offset);
   238 	    out[i].offset_rgba[3] = FARGB_A(offset);
   239 	}
   240 	vertexes += vertex_size;
   241     }
   242 }
   244 /**
   245  * Unpack the vertexes for a quad, calculating the values for the last
   246  * vertex.
   247  * FIXME: Integrate this with rendbkg somehow
   248  */
   249 void render_unpack_quad( struct vertex_unpacked *unpacked, uint32_t poly1, 
   250 			 uint32_t *vertexes, int vertex_size,
   251 			 int render_mode )
   252 {
   253     int i;
   254     struct vertex_unpacked diff0, diff1;
   256     render_unpack_vertexes( unpacked, poly1, vertexes, 3, vertex_size, render_mode );
   258     diff0.x = unpacked[0].x - unpacked[1].x;
   259     diff0.y = unpacked[0].y - unpacked[1].y;
   260     diff1.x = unpacked[2].x - unpacked[1].x;
   261     diff1.y = unpacked[2].y - unpacked[1].y;
   263     float detxy = ((diff1.y) * (diff0.x)) - ((diff0.y) * (diff1.x));
   264     float *vertexf = (float *)(vertexes+(vertex_size*3));
   265     if( detxy == 0 ) {
   266 	memcpy( &unpacked[3], &unpacked[2], sizeof(struct vertex_unpacked) );
   267 	unpacked[3].x = vertexf[0];
   268 	unpacked[3].y = vertexf[1];
   269 	return;
   270     }	
   272     unpacked[3].x = vertexf[0];
   273     unpacked[3].y = vertexf[1];
   274     float t = ((unpacked[3].x - unpacked[1].x) * diff1.y -
   275 	       (unpacked[3].y - unpacked[1].y) * diff1.x) / detxy;
   276     float s = ((unpacked[3].y - unpacked[1].y) * diff0.x -
   277 	       (unpacked[3].x - unpacked[1].x) * diff0.y) / detxy;
   278     diff0.z = (1/unpacked[0].z) - (1/unpacked[1].z);
   279     diff1.z = (1/unpacked[2].z) - (1/unpacked[1].z);
   280     unpacked[3].z = 1/((1/unpacked[1].z) + (t*diff0.z) + (s*diff1.z));
   282     diff0.u = unpacked[0].u - unpacked[1].u;
   283     diff0.v = unpacked[0].v - unpacked[1].v;
   284     diff1.u = unpacked[2].u - unpacked[1].u;
   285     diff1.v = unpacked[2].v - unpacked[1].v;
   286     unpacked[3].u = unpacked[1].u + (t*diff0.u) + (s*diff1.u);
   287     unpacked[3].v = unpacked[1].v + (t*diff0.v) + (s*diff1.v);
   289     if( !POLY1_GOURAUD_SHADED(poly1) ) {
   290 	memcpy( unpacked[3].rgba, unpacked[2].rgba, sizeof(unpacked[2].rgba) );
   291 	memcpy( unpacked[3].offset_rgba, unpacked[2].offset_rgba, sizeof(unpacked[2].offset_rgba) );
   292     } else {
   293 	for( i=0; i<4; i++ ) {
   294 	    float d0 = unpacked[0].rgba[i] - unpacked[1].rgba[i];
   295 	    float d1 = unpacked[2].rgba[i] - unpacked[1].rgba[i];
   296 	    unpacked[3].rgba[i] = unpacked[1].rgba[i] + (t*d0) + (s*d1);
   297 	    d0 = unpacked[0].offset_rgba[i] - unpacked[1].offset_rgba[i];
   298 	    d1 = unpacked[2].offset_rgba[i] - unpacked[1].offset_rgba[i];
   299 	    unpacked[3].offset_rgba[i] = unpacked[1].offset_rgba[i] + (t*d0) + (s*d1);
   300 	}
   301     }    
   302 }
   304 void render_unpacked_vertex_array( uint32_t poly1, struct vertex_unpacked *vertexes[], 
   305 				   int num_vertexes ) {
   306     int i;
   308     glBegin( GL_TRIANGLE_STRIP );
   310     for( i=0; i<num_vertexes; i++ ) {
   311 	if( POLY1_TEXTURED(poly1) ) {
   312 	    glTexCoord2f( vertexes[i]->u, vertexes[i]->v );
   313 	}
   315 	if( pvr2_force_fragment_alpha ) {
   316 	    glColor4f( vertexes[i]->rgba[0], vertexes[i]->rgba[1], vertexes[i]->rgba[2], 1.0 );
   317 	} else {
   318 	    glColor4f( vertexes[i]->rgba[0], vertexes[i]->rgba[1], vertexes[i]->rgba[2],
   319 		       vertexes[i]->rgba[3] );
   320 	}
   321 	if( POLY1_SPECULAR(poly1) ) {
   322 	    glSecondaryColor3fEXT( vertexes[i]->offset_rgba[0],
   323 				   vertexes[i]->offset_rgba[1],
   324 				   vertexes[i]->offset_rgba[2] );
   325 	}
   326 	glVertex3f( vertexes[i]->x, vertexes[i]->y, 1/vertexes[i]->z );
   327     }
   329     glEnd();
   330 }
   332 void render_quad_vertexes( uint32_t poly1, uint32_t *vertexes, int vertex_size, int render_mode )
   333 {
   334     struct vertex_unpacked unpacked[4];
   335     struct vertex_unpacked *pt[4] = {&unpacked[0], &unpacked[1], &unpacked[3], &unpacked[2]};
   336     render_unpack_quad( unpacked, poly1, vertexes, vertex_size, render_mode );
   337     render_unpacked_vertex_array( poly1, pt, 4 );
   338 }
   340 void render_vertex_array( uint32_t poly1, uint32_t *vert_array[], int num_vertexes, int vertex_size,
   341 			  int render_mode ) 
   342 {
   343     int i, m=0;
   345     if( render_mode == RENDER_FULLMOD ) {
   346 	m = (vertex_size - 3)/2;
   347     }
   349     glBegin( GL_TRIANGLE_STRIP );
   351     for( i=0; i<num_vertexes; i++ ) {
   352 	uint32_t *vertexes = vert_array[i];
   353 	float *vertexf = (float *)vert_array[i];
   354 	uint32_t argb;
   355 	int k = m + 3;
   356 	if( POLY1_TEXTURED(poly1) ) {
   357 	    if( POLY1_UV16(poly1) ) {
   358 		glTexCoord2f( halftofloat(vertexes[k]>>16),
   359 			      halftofloat(vertexes[k]) );
   360 		k++;
   361 	    } else {
   362 		glTexCoord2f( vertexf[k], vertexf[k+1] );
   363 		k+=2;
   364 	    }
   365 	}
   367 	argb = vertexes[k++];
   368 	if( pvr2_force_fragment_alpha ) {
   369 	    glColor4ub( (GLubyte)(argb >> 16), (GLubyte)(argb >> 8), 
   370 			(GLubyte)argb, 0xFF );
   371 	} else {
   372 	    glColor4ub( (GLubyte)(argb >> 16), (GLubyte)(argb >> 8), 
   373 			(GLubyte)argb, (GLubyte)(argb >> 24) );
   374 	}
   376 	if( POLY1_SPECULAR(poly1) ) {
   377 	    uint32_t spec = vertexes[k++];
   378 	    glSecondaryColor3ubEXT( (GLubyte)(spec >> 16), (GLubyte)(spec >> 8), 
   379 				 (GLubyte)spec );
   380 	}
   381 	glVertex3f( vertexf[0], vertexf[1], 1/vertexf[2] );
   382 	vertexes += vertex_size;
   383     }
   385     glEnd();
   386 }
   388 void render_vertexes( uint32_t poly1, uint32_t *vertexes, int num_vertexes, int vertex_size,
   389 		      int render_mode )
   390 {
   391     uint32_t *vert_array[num_vertexes];
   392     int i;
   393     for( i=0; i<num_vertexes; i++ ) {
   394 	vert_array[i] = vertexes;
   395 	vertexes += vertex_size;
   396     }
   397     render_vertex_array( poly1, vert_array, num_vertexes, vertex_size, render_mode );
   398 }
   400 /**
   401  * Render a simple (not auto-sorted) tile
   402  */
   403 void render_tile( pvraddr_t tile_entry, int render_mode, gboolean cheap_modifier_mode ) {
   404     uint32_t poly_bank = MMIO_READ(PVR2,RENDER_POLYBASE);
   405     uint32_t *tile_list = (uint32_t *)(video_base+tile_entry);
   406     do {
   407 	uint32_t entry = *tile_list++;
   408 	if( entry >> 28 == 0x0F ) {
   409 	    break;
   410 	} else if( entry >> 28 == 0x0E ) {
   411 	    tile_list = (uint32_t *)(video_base + (entry&0x007FFFFF));
   412 	} else {
   413 	    uint32_t *polygon = (uint32_t *)(video_base + poly_bank + ((entry & 0x000FFFFF) << 2));
   414 	    int is_modified = entry & 0x01000000;
   415 	    int vertex_length = (entry >> 21) & 0x07;
   416 	    int context_length = 3;
   417 	    if( is_modified && !cheap_modifier_mode ) {
   418 		context_length = 5;
   419 		vertex_length *= 2 ;
   420 	    }
   421 	    vertex_length += 3;
   423 	    if( (entry & 0xE0000000) == 0x80000000 ) {
   424 		/* Triangle(s) */
   425 		int strip_count = ((entry >> 25) & 0x0F)+1;
   426 		int polygon_length = 3 * vertex_length + context_length;
   427 		int i;
   428 		for( i=0; i<strip_count; i++ ) {
   429 		    render_set_context( polygon, render_mode );
   430 		    render_vertexes( *polygon, polygon+context_length, 3, vertex_length,
   431 		    		     render_mode );
   432 		    polygon += polygon_length;
   433 		}
   434 	    } else if( (entry & 0xE0000000) == 0xA0000000 ) {
   435 		/* Sprite(s) */
   436 		int strip_count = ((entry >> 25) & 0x0F)+1;
   437 		int polygon_length = 4 * vertex_length + context_length;
   438 		int i;
   439 		for( i=0; i<strip_count; i++ ) {
   440 		    render_set_context( polygon, render_mode );
   441 		    render_quad_vertexes( *polygon, polygon+context_length, vertex_length,
   442 		    			  render_mode );
   443 		    polygon += polygon_length;
   444 		}
   445 	    } else {
   446 		/* Polygon */
   447 		int i, first=-1, last = -1;
   448 		for( i=0; i<6; i++ ) {
   449 		    if( entry & (0x40000000>>i) ) {
   450 			if( first == -1 ) first = i;
   451 			last = i;
   452 		    }
   453 		}
   454 		if( first != -1 ) {
   455 		    first = 0;
   456 		    render_set_context(polygon, render_mode);
   457 		    render_vertexes( *polygon, polygon+context_length + (first*vertex_length),
   458 		    		     (last-first+3), vertex_length, render_mode );
   459 		}
   460 	    }
   461 	}
   462     } while( 1 );
   463 }
   465 void pvr2_render_tilebuffer( int width, int height, int clipx1, int clipy1, 
   466 			int clipx2, int clipy2 ) {
   468     pvraddr_t segmentbase = MMIO_READ( PVR2, RENDER_TILEBASE );
   469     int tile_sort;
   470     gboolean cheap_shadow;
   472     int obj_config = MMIO_READ( PVR2, RENDER_OBJCFG );
   473     int isp_config = MMIO_READ( PVR2, RENDER_ISPCFG );
   474     int shadow_cfg = MMIO_READ( PVR2, RENDER_SHADOW );
   476     if( (obj_config & 0x00200000) == 0 ) {
   477 	if( isp_config & 1 ) {
   478 	    tile_sort = 0;
   479 	} else {
   480 	    tile_sort = 2;
   481 	}
   482     } else {
   483 	tile_sort = 1;
   484     }
   486     cheap_shadow = shadow_cfg & 0x100 ? TRUE : FALSE;
   488     struct tile_segment *segment = (struct tile_segment *)(video_base + segmentbase);
   490     glEnable( GL_SCISSOR_TEST );
   491     do {
   492 	// fwrite_dump32v( (uint32_t *)segment, sizeof(struct tile_segment), 6, stderr );
   493 	int tilex = SEGMENT_X(segment->control);
   494 	int tiley = SEGMENT_Y(segment->control);
   496 	int x1 = tilex << 5;
   497 	int y1 = tiley << 5;
   498 	if( x1 + 32 <= clipx1 ||
   499 	    y1 + 32 <= clipy1 ||
   500 	    x1 >= clipx2 ||
   501 	    y1 >= clipy2 ) {
   502 	    /* Tile completely clipped, skip */
   503 	    continue;
   504 	}
   506 	/* Set a scissor on the visible part of the tile */
   507 	int w = MIN(x1+32, clipx2) - x1;
   508 	int h = MIN(y1+32, clipy2) - y1;
   509 	x1 = MAX(x1,clipx1);
   510 	y1 = MAX(y1,clipy1);
   511 	glScissor( x1, height-y1-h, w, h );
   513 	if( (segment->opaque_ptr & NO_POINTER) == 0 ) {
   514 	    if( pvr2_debug_render ) {
   515 		fprintf( stderr, "Tile %d,%d Opaque\n", tilex, tiley );
   516 		render_print_tilelist( stderr, segment->opaque_ptr );
   517 	    }
   518 	    if( (segment->opaquemod_ptr & NO_POINTER) == 0 ) {
   519 		/* TODO */
   520 	    }
   521 	    render_tile( segment->opaque_ptr, RENDER_NORMAL, cheap_shadow );
   522 	}
   524 	if( (segment->trans_ptr & NO_POINTER) == 0 ) {
   525 	    if( pvr2_debug_render ) {
   526 		fprintf( stderr, "Tile %d,%d Trans\n", tilex, tiley );
   527 		render_print_tilelist( stderr, segment->trans_ptr );
   528 	    }
   529 	    if( (segment->transmod_ptr & NO_POINTER) == 0 ) {
   530 		/* TODO */
   531 	    } 
   532 	    if( tile_sort == 2 || 
   533 		(tile_sort == 1 && ((segment->control & SEGMENT_SORT_TRANS)==0)) ) {
   534 		render_autosort_tile( segment->trans_ptr, RENDER_NORMAL, cheap_shadow );
   535 	    } else {
   536 		render_tile( segment->trans_ptr, RENDER_NORMAL, cheap_shadow );
   537 	    }
   538 	}
   540 	if( (segment->punchout_ptr & NO_POINTER) == 0 ) {
   541 	    if( pvr2_debug_render ) {
   542 		fprintf( stderr, "Tile %d,%d Punchout\n", tilex, tiley );
   543 		render_print_tilelist( stderr, segment->punchout_ptr );
   544 	    }
   545 	    render_tile( segment->punchout_ptr, RENDER_NORMAL, cheap_shadow );
   546 	}
   547     } while( ((segment++)->control & SEGMENT_END) == 0 );
   548     glDisable( GL_SCISSOR_TEST );
   549 }
   551 static float render_find_maximum_tile_z( pvraddr_t tile_entry, float inputz )
   552 {
   553     uint32_t poly_bank = MMIO_READ(PVR2,RENDER_POLYBASE);
   554     uint32_t *tile_list = (uint32_t *)(video_base+tile_entry);
   555     int shadow_cfg = MMIO_READ( PVR2, RENDER_SHADOW ) & 0x100;
   556     int i, j;
   557     float z = inputz;
   558     do {
   559 	uint32_t entry = *tile_list++;
   560 	if( entry >> 28 == 0x0F ) {
   561 	    break;
   562 	} else if( entry >> 28 == 0x0E ) {
   563 	    tile_list = (uint32_t *)(video_base + (entry&0x007FFFFF));
   564 	} else {
   565 	    uint32_t *polygon = (uint32_t *)(video_base + poly_bank + ((entry & 0x000FFFFF) << 2));
   566 	    int vertex_length = (entry >> 21) & 0x07;
   567 	    int context_length = 3;
   568 	    if( (entry & 0x01000000) && (shadow_cfg==0) ) {
   569 		context_length = 5;
   570 		vertex_length *= 2 ;
   571 	    }
   572 	    vertex_length += 3;
   573 	    if( (entry & 0xE0000000) == 0x80000000 ) {
   574 		/* Triangle(s) */
   575 		int strip_count = ((entry >> 25) & 0x0F)+1;
   576 		float *vertexz = (float *)(polygon+context_length+2);
   577 		for( i=0; i<strip_count; i++ ) {
   578 		    for( j=0; j<3; j++ ) {
   579 			if( *vertexz > z ) {
   580 			    z = *vertexz;
   581 			}
   582 			vertexz += vertex_length;
   583 		    }
   584 		    vertexz += context_length;
   585 		}
   586 	    } else if( (entry & 0xE0000000) == 0xA0000000 ) {
   587 		/* Sprite(s) */
   588 		int strip_count = ((entry >> 25) & 0x0F)+1;
   589 		int i;
   590 		float *vertexz = (float *)(polygon+context_length+2);
   591 		for( i=0; i<strip_count; i++ ) {
   592 		    for( j=0; j<4; j++ ) {
   593 			if( *vertexz > z ) {
   594 			    z = *vertexz;
   595 			}
   596 			vertexz += vertex_length;
   597 		    }
   598 		    vertexz+=context_length;
   599 		}
   600 	    } else {
   601 		/* Polygon */
   602 		int i;
   603 		float *vertexz = (float *)polygon+context_length+2;
   604 		for( i=0; i<6; i++ ) {
   605 		    if( (entry & (0x40000000>>i)) && *vertexz > z ) {
   606 			z = *vertexz;
   607 		    }
   608 		    vertexz += vertex_length;
   609 		}
   610 	    }
   611 	}
   612     } while(1);
   613     return z;
   614 }
   616 /**
   617  * Scan through the scene to determine the largest z value (in order to set up
   618  * an appropriate near clip plane).
   619  */
   620 float pvr2_render_find_maximum_z( )
   621 {
   622     pvraddr_t segmentbase = MMIO_READ( PVR2, RENDER_TILEBASE );
   623     float maximumz = MMIO_READF( PVR2, RENDER_FARCLIP ); /* Initialize to the far clip plane */
   625     struct tile_segment *segment = (struct tile_segment *)(video_base + segmentbase);
   626     do {
   628 	if( (segment->opaque_ptr & NO_POINTER) == 0 ) {
   629 	    maximumz = render_find_maximum_tile_z(segment->opaque_ptr, maximumz);
   630 	}
   631 	if( (segment->opaquemod_ptr & NO_POINTER) == 0 ) {
   632 	    maximumz = render_find_maximum_tile_z(segment->opaquemod_ptr, maximumz);
   633 	}
   634 	if( (segment->trans_ptr & NO_POINTER) == 0 ) {
   635 	    maximumz = render_find_maximum_tile_z(segment->trans_ptr, maximumz);
   636 	}
   637 	if( (segment->transmod_ptr & NO_POINTER) == 0 ) {
   638 	    maximumz = render_find_maximum_tile_z(segment->transmod_ptr, maximumz);
   639 	}
   640 	if( (segment->punchout_ptr & NO_POINTER) == 0 ) {
   641 	    maximumz = render_find_maximum_tile_z(segment->punchout_ptr, maximumz);
   642 	}
   644     } while( ((segment++)->control & SEGMENT_END) == 0 );
   646     return 1/maximumz;
   647 }
   649 /**
   650  * Scan the segment info to determine the width and height of the render (in 
   651  * pixels).
   652  * @param x,y output values to receive the width and height info.
   653  */
   654 void pvr2_render_getsize( int *x, int *y ) 
   655 {
   656     pvraddr_t segmentbase = MMIO_READ( PVR2, RENDER_TILEBASE );
   657     int maxx = 0, maxy = 0;
   659     struct tile_segment *segment = (struct tile_segment *)(video_base + segmentbase);
   660     do {
   661 	int tilex = SEGMENT_X(segment->control);
   662 	int tiley = SEGMENT_Y(segment->control);
   663 	if( tilex > maxx ) {
   664 	    maxx = tilex;
   665 	} 
   666 	if( tiley > maxy ) {
   667 	    maxy = tiley;
   668 	}
   669     } while( ((segment++)->control & SEGMENT_END) == 0 );
   671     *x = (maxx+1)<<5;
   672     *y = (maxy+1)<<5;
   673 }
   675 void render_print_vertexes( FILE *f, uint32_t poly1, uint32_t *vert_array[], 
   676 			    int num_vertexes, int vertex_size )
   677 {
   678     char buf[256], *p;
   679     int i, k;
   680     for( i=0; i<num_vertexes; i++ ) {
   681 	p = buf;
   682 	float *vertf = (float *)vert_array[i];
   683 	uint32_t *verti = (uint32_t *)vert_array[i];
   684 	p += sprintf( p, "  V %9.5f,%9.5f,%9.5f  ", vertf[0], vertf[1], vertf[2] );
   685 	k = 3;
   686 	if( POLY1_TEXTURED(poly1) ) {
   687 	    if( POLY1_UV16(poly1) ) {
   688 		p += sprintf( p, "uv=%9.5f,%9.5f  ",
   689 			       halftofloat(verti[k]>>16),
   690 			       halftofloat(verti[k]) );
   691 		k++;
   692 	    } else {
   693 		p += sprintf( p, "uv=%9.5f,%9.5f  ", vertf[k], vertf[k+1] );
   694 		k+=2;
   695 	    }
   696 	}
   698 	p += sprintf( p, "%08X ", verti[k++] );
   699 	if( POLY1_SPECULAR(poly1) ) {
   700 	    p += sprintf( p, "%08X", verti[k++] );
   701 	}
   702 	p += sprintf( p, "\n" );
   703 	fprintf( f, buf );
   704     }
   705 }
   707 void render_print_polygon( FILE *f, uint32_t entry )
   708 {
   709     uint32_t poly_bank = MMIO_READ(PVR2,RENDER_POLYBASE);
   710     int shadow_cfg = MMIO_READ( PVR2, RENDER_SHADOW ) & 0x100;
   711     int i;
   713     if( entry >> 28 == 0x0F ) {
   714 	fprintf( f, "EOT\n" );
   715     } else if( entry >> 28 == 0x0E ) {
   716 	fprintf( f, "LINK %08X\n", entry &0x7FFFFF );
   717     } else {
   718 	uint32_t *polygon = (uint32_t *)(video_base + poly_bank + ((entry & 0x000FFFFF) << 2));
   719 	int vertex_length = (entry >> 21) & 0x07;
   720 	int context_length = 3;
   721 	if( (entry & 0x01000000) && (shadow_cfg==0) ) {
   722 	    context_length = 5;
   723 	    vertex_length *= 2 ;
   724 	}
   725 	vertex_length += 3;
   726 	if( (entry & 0xE0000000) == 0x80000000 ) {
   727 	    /* Triangle(s) */
   728 	    int strip_count = ((entry >> 25) & 0x0F)+1;
   729 	    for( i=0; i<strip_count; i++ ) {
   730 		fprintf( f, "TRI  %08X %08X %08X\n", polygon[0], polygon[1], polygon[2] ); 
   731 		uint32_t *array[3];
   732 		array[0] = polygon + context_length;
   733 		array[1] = array[0] + vertex_length;
   734 		array[2] = array[1] + vertex_length;
   735 		render_print_vertexes( f, *polygon, array, 3, vertex_length );
   736 		polygon = array[2] + vertex_length;
   737 	    }
   738 	} else if( (entry & 0xE0000000) == 0xA0000000 ) {
   739 	    /* Sprite(s) */
   740 	    int strip_count = ((entry >> 25) & 0x0F)+1;
   741 	    for( i=0; i<strip_count; i++ ) {
   742 		fprintf( f, "QUAD %08X %08X %08X\n", polygon[0], polygon[1], polygon[2] ); 
   743 		uint32_t *array[4];
   744 		array[0] = polygon + context_length;
   745 		array[1] = array[0] + vertex_length;
   746 		array[2] = array[1] + vertex_length;
   747 		array[3] = array[2] + vertex_length;
   748 		render_print_vertexes( f, *polygon, array, 4, vertex_length );
   749 		polygon = array[3] + vertex_length;
   750 	    }
   751 	} else {
   752 	    /* Polygon */
   753 	    int last = -1;
   754 	    uint32_t *array[8];
   755 	    for( i=0; i<6; i++ ) {
   756 		if( entry & (0x40000000>>i) ) {
   757 		    last = i;
   758 		}
   759 	    }
   760 	    fprintf( f, "POLY %08X %08X %08X\n", polygon[0], polygon[1], polygon[2] );
   761 	    for( i=0; i<last+2; i++ ) {
   762 		array[i] = polygon + context_length + vertex_length*i;
   763 	    }
   764 	    render_print_vertexes( f, *polygon, array, last+2, vertex_length );
   765 	}
   766     }
   767 }
   769 void render_print_tilelist( FILE *f, uint32_t tile_entry )
   770 {
   771     uint32_t *tile_list = (uint32_t *)(video_base+tile_entry);
   772     do {
   773 	uint32_t entry = *tile_list++;
   774 	if( entry >> 28 == 0x0F ) {
   775 	    break;
   776 	} else if( entry >> 28 == 0x0E ) {
   777 	    tile_list = (uint32_t *)(video_base + (entry&0x007FFFFF));
   778 	} else {
   779 	    render_print_polygon(f, entry);
   780 	}
   781     } while( 1 );
   782 }
.