nkeynes@378: /** nkeynes@586: * $Id$ nkeynes@378: * nkeynes@378: * SH4 parent module for all CPU modes and SH4 peripheral nkeynes@378: * modules. nkeynes@378: * nkeynes@378: * Copyright (c) 2005 Nathan Keynes. nkeynes@378: * nkeynes@378: * This program is free software; you can redistribute it and/or modify nkeynes@378: * it under the terms of the GNU General Public License as published by nkeynes@378: * the Free Software Foundation; either version 2 of the License, or nkeynes@378: * (at your option) any later version. nkeynes@378: * nkeynes@378: * This program is distributed in the hope that it will be useful, nkeynes@378: * but WITHOUT ANY WARRANTY; without even the implied warranty of nkeynes@378: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the nkeynes@378: * GNU General Public License for more details. nkeynes@378: */ nkeynes@378: nkeynes@378: #define MODULE sh4_module nkeynes@378: #include nkeynes@740: #include nkeynes@617: #include nkeynes@671: #include "lxdream.h" nkeynes@422: #include "dreamcast.h" nkeynes@669: #include "mem.h" nkeynes@669: #include "clock.h" nkeynes@669: #include "eventq.h" nkeynes@669: #include "syscall.h" nkeynes@669: #include "sh4/intc.h" nkeynes@968: #include "sh4/mmu.h" nkeynes@378: #include "sh4/sh4core.h" nkeynes@378: #include "sh4/sh4mmio.h" nkeynes@422: #include "sh4/sh4stat.h" nkeynes@617: #include "sh4/sh4trans.h" nkeynes@669: #include "sh4/xltcache.h" nkeynes@378: nkeynes@378: void sh4_init( void ); nkeynes@526: void sh4_xlat_init( void ); nkeynes@953: void sh4_poweron_reset( void ); nkeynes@378: void sh4_start( void ); nkeynes@378: void sh4_stop( void ); nkeynes@378: void sh4_save_state( FILE *f ); nkeynes@378: int sh4_load_state( FILE *f ); nkeynes@378: nkeynes@378: uint32_t sh4_run_slice( uint32_t ); nkeynes@378: uint32_t sh4_xlat_run_slice( uint32_t ); nkeynes@378: nkeynes@953: struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, nkeynes@736: sh4_start, sh4_run_slice, sh4_stop, nkeynes@736: sh4_save_state, sh4_load_state }; nkeynes@378: nkeynes@903: struct sh4_registers sh4r __attribute__((aligned(16))); nkeynes@378: struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS]; nkeynes@378: int sh4_breakpoint_count = 0; nkeynes@953: nkeynes@591: gboolean sh4_starting = FALSE; nkeynes@526: static gboolean sh4_use_translator = FALSE; nkeynes@740: static jmp_buf sh4_exit_jmp_buf; nkeynes@740: static gboolean sh4_running = FALSE; nkeynes@586: struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 }; nkeynes@378: nkeynes@740: void sh4_translate_set_enabled( gboolean use ) nkeynes@378: { nkeynes@736: // No-op if the translator was not built nkeynes@526: #ifdef SH4_TRANSLATOR nkeynes@378: if( use ) { nkeynes@736: sh4_translate_init(); nkeynes@378: } nkeynes@526: sh4_use_translator = use; nkeynes@526: #endif nkeynes@378: } nkeynes@378: nkeynes@740: gboolean sh4_translate_is_enabled() nkeynes@586: { nkeynes@586: return sh4_use_translator; nkeynes@586: } nkeynes@586: nkeynes@378: void sh4_init(void) nkeynes@378: { nkeynes@378: register_io_regions( mmio_list_sh4mmio ); nkeynes@378: MMU_init(); nkeynes@619: TMU_init(); nkeynes@953: xlat_cache_init(); nkeynes@953: sh4_poweron_reset(); nkeynes@671: #ifdef ENABLE_SH4STATS nkeynes@671: sh4_stats_reset(); nkeynes@671: #endif nkeynes@378: } nkeynes@378: nkeynes@591: void sh4_start(void) nkeynes@591: { nkeynes@591: sh4_starting = TRUE; nkeynes@591: } nkeynes@591: nkeynes@953: void sh4_poweron_reset(void) nkeynes@378: { nkeynes@953: /* zero everything out, for the sake of having a consistent state. */ nkeynes@953: memset( &sh4r, 0, sizeof(sh4r) ); nkeynes@526: if( sh4_use_translator ) { nkeynes@736: xlat_flush_cache(); nkeynes@472: } nkeynes@472: nkeynes@378: /* Resume running if we were halted */ nkeynes@378: sh4r.sh4_state = SH4_STATE_RUNNING; nkeynes@378: nkeynes@378: sh4r.pc = 0xA0000000; nkeynes@378: sh4r.new_pc= 0xA0000002; nkeynes@378: sh4r.vbr = 0x00000000; nkeynes@378: sh4r.fpscr = 0x00040001; nkeynes@953: sh4_write_sr(0x700000F0); nkeynes@378: nkeynes@378: /* Mem reset will do this, but if we want to reset _just_ the SH4... */ nkeynes@378: MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET ); nkeynes@378: nkeynes@378: /* Peripheral modules */ nkeynes@378: CPG_reset(); nkeynes@378: INTC_reset(); nkeynes@841: PMM_reset(); nkeynes@378: TMU_reset(); nkeynes@378: SCIF_reset(); nkeynes@953: MMU_reset(); nkeynes@378: } nkeynes@378: nkeynes@378: void sh4_stop(void) nkeynes@378: { nkeynes@526: if( sh4_use_translator ) { nkeynes@736: /* If we were running with the translator, update new_pc and in_delay_slot */ nkeynes@736: sh4r.new_pc = sh4r.pc+2; nkeynes@736: sh4r.in_delay_slot = FALSE; nkeynes@502: } nkeynes@378: nkeynes@378: } nkeynes@378: nkeynes@740: /** nkeynes@740: * Execute a timeslice using translated code only (ie translate/execute loop) nkeynes@740: */ nkeynes@740: uint32_t sh4_run_slice( uint32_t nanosecs ) nkeynes@740: { nkeynes@740: sh4r.slice_cycle = 0; nkeynes@740: nkeynes@740: if( sh4r.sh4_state != SH4_STATE_RUNNING ) { nkeynes@740: sh4_sleep_run_slice(nanosecs); nkeynes@740: } nkeynes@740: nkeynes@740: /* Setup for sudden vm exits */ nkeynes@740: switch( setjmp(sh4_exit_jmp_buf) ) { nkeynes@740: case CORE_EXIT_BREAKPOINT: nkeynes@740: sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT ); nkeynes@740: /* fallthrough */ nkeynes@740: case CORE_EXIT_HALT: nkeynes@740: if( sh4r.sh4_state != SH4_STATE_STANDBY ) { nkeynes@740: TMU_run_slice( sh4r.slice_cycle ); nkeynes@740: SCIF_run_slice( sh4r.slice_cycle ); nkeynes@841: PMM_run_slice( sh4r.slice_cycle ); nkeynes@740: dreamcast_stop(); nkeynes@740: return sh4r.slice_cycle; nkeynes@740: } nkeynes@740: case CORE_EXIT_SYSRESET: nkeynes@740: dreamcast_reset(); nkeynes@740: break; nkeynes@740: case CORE_EXIT_SLEEP: nkeynes@740: sh4_sleep_run_slice(nanosecs); nkeynes@740: break; nkeynes@740: case CORE_EXIT_FLUSH_ICACHE: nkeynes@740: xlat_flush_cache(); nkeynes@740: break; nkeynes@740: } nkeynes@740: nkeynes@740: sh4_running = TRUE; nkeynes@740: nkeynes@740: /* Execute the core's real slice */ nkeynes@740: #ifdef SH4_TRANSLATOR nkeynes@740: if( sh4_use_translator ) { nkeynes@740: sh4_translate_run_slice(nanosecs); nkeynes@740: } else { nkeynes@740: sh4_emulate_run_slice(nanosecs); nkeynes@740: } nkeynes@740: #else nkeynes@740: sh4_emulate_run_slice(nanosecs); nkeynes@740: #endif nkeynes@740: nkeynes@740: /* And finish off the peripherals afterwards */ nkeynes@740: nkeynes@740: sh4_running = FALSE; nkeynes@740: sh4_starting = FALSE; nkeynes@740: sh4r.slice_cycle = nanosecs; nkeynes@740: if( sh4r.sh4_state != SH4_STATE_STANDBY ) { nkeynes@740: TMU_run_slice( nanosecs ); nkeynes@740: SCIF_run_slice( nanosecs ); nkeynes@841: PMM_run_slice( sh4r.slice_cycle ); nkeynes@740: } nkeynes@740: return nanosecs; nkeynes@740: } nkeynes@740: nkeynes@740: void sh4_core_exit( int exit_code ) nkeynes@740: { nkeynes@740: if( sh4_running ) { nkeynes@740: #ifdef SH4_TRANSLATOR nkeynes@740: if( sh4_use_translator ) { nkeynes@953: if( exit_code == CORE_EXIT_EXCEPTION ) { nkeynes@953: sh4_translate_exception_exit_recover(); nkeynes@953: } else { nkeynes@953: sh4_translate_exit_recover(); nkeynes@953: } nkeynes@740: } nkeynes@740: #endif nkeynes@953: if( exit_code != CORE_EXIT_EXCEPTION ) { nkeynes@953: sh4_finalize_instruction(); nkeynes@953: } nkeynes@740: // longjmp back into sh4_run_slice nkeynes@740: sh4_running = FALSE; nkeynes@740: longjmp(sh4_exit_jmp_buf, exit_code); nkeynes@740: } nkeynes@740: } nkeynes@740: nkeynes@378: void sh4_save_state( FILE *f ) nkeynes@378: { nkeynes@526: if( sh4_use_translator ) { nkeynes@736: /* If we were running with the translator, update new_pc and in_delay_slot */ nkeynes@736: sh4r.new_pc = sh4r.pc+2; nkeynes@736: sh4r.in_delay_slot = FALSE; nkeynes@401: } nkeynes@401: nkeynes@953: fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f ); nkeynes@378: MMU_save_state( f ); nkeynes@953: CCN_save_state( f ); nkeynes@841: PMM_save_state( f ); nkeynes@378: INTC_save_state( f ); nkeynes@378: TMU_save_state( f ); nkeynes@378: SCIF_save_state( f ); nkeynes@378: } nkeynes@378: nkeynes@378: int sh4_load_state( FILE * f ) nkeynes@378: { nkeynes@526: if( sh4_use_translator ) { nkeynes@736: xlat_flush_cache(); nkeynes@472: } nkeynes@953: fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f ); nkeynes@953: sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR)); nkeynes@378: MMU_load_state( f ); nkeynes@953: CCN_load_state( f ); nkeynes@841: PMM_load_state( f ); nkeynes@378: INTC_load_state( f ); nkeynes@378: TMU_load_state( f ); nkeynes@378: return SCIF_load_state( f ); nkeynes@378: } nkeynes@378: nkeynes@586: void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type ) nkeynes@378: { nkeynes@378: sh4_breakpoints[sh4_breakpoint_count].address = pc; nkeynes@378: sh4_breakpoints[sh4_breakpoint_count].type = type; nkeynes@586: if( sh4_use_translator ) { nkeynes@736: xlat_invalidate_word( pc ); nkeynes@586: } nkeynes@378: sh4_breakpoint_count++; nkeynes@378: } nkeynes@378: nkeynes@586: gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type ) nkeynes@378: { nkeynes@378: int i; nkeynes@378: nkeynes@378: for( i=0; i (int64_t)0x00007FFFFFFFFFFFLL ) nkeynes@736: sh4r.mac = 0x00007FFFFFFFFFFFLL; nkeynes@401: } nkeynes@401: nkeynes@905: void FASTCALL sh4_fsca( uint32_t anglei, float *fr ) nkeynes@401: { nkeynes@401: float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI; nkeynes@401: *fr++ = cosf(angle); nkeynes@401: *fr = sinf(angle); nkeynes@401: } nkeynes@401: nkeynes@617: /** nkeynes@617: * Enter sleep mode (eg by executing a SLEEP instruction). nkeynes@617: * Sets sh4_state appropriately and ensures any stopping peripheral modules nkeynes@617: * are up to date. nkeynes@617: */ nkeynes@905: void FASTCALL sh4_sleep(void) nkeynes@401: { nkeynes@401: if( MMIO_READ( CPG, STBCR ) & 0x80 ) { nkeynes@736: sh4r.sh4_state = SH4_STATE_STANDBY; nkeynes@736: /* Bring all running peripheral modules up to date, and then halt them. */ nkeynes@736: TMU_run_slice( sh4r.slice_cycle ); nkeynes@736: SCIF_run_slice( sh4r.slice_cycle ); nkeynes@841: PMM_run_slice( sh4r.slice_cycle ); nkeynes@401: } else { nkeynes@736: if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) { nkeynes@736: sh4r.sh4_state = SH4_STATE_DEEP_SLEEP; nkeynes@736: /* Halt DMAC but other peripherals still running */ nkeynes@736: nkeynes@736: } else { nkeynes@736: sh4r.sh4_state = SH4_STATE_SLEEP; nkeynes@736: } nkeynes@617: } nkeynes@740: sh4_core_exit( CORE_EXIT_SLEEP ); nkeynes@401: } nkeynes@401: nkeynes@401: /** nkeynes@617: * Wakeup following sleep mode (IRQ or reset). Sets state back to running, nkeynes@617: * and restarts any peripheral devices that were stopped. nkeynes@617: */ nkeynes@617: void sh4_wakeup(void) nkeynes@617: { nkeynes@617: switch( sh4r.sh4_state ) { nkeynes@617: case SH4_STATE_STANDBY: nkeynes@736: break; nkeynes@617: case SH4_STATE_DEEP_SLEEP: nkeynes@736: break; nkeynes@617: case SH4_STATE_SLEEP: nkeynes@736: break; nkeynes@617: } nkeynes@617: sh4r.sh4_state = SH4_STATE_RUNNING; nkeynes@617: } nkeynes@617: nkeynes@617: /** nkeynes@617: * Run a time slice (or portion of a timeslice) while the SH4 is sleeping. nkeynes@617: * Returns when either the SH4 wakes up (interrupt received) or the end of nkeynes@617: * the slice is reached. Updates sh4.slice_cycle with the exit time and nkeynes@617: * returns the same value. nkeynes@617: */ nkeynes@617: uint32_t sh4_sleep_run_slice( uint32_t nanosecs ) nkeynes@617: { nkeynes@617: int sleep_state = sh4r.sh4_state; nkeynes@617: assert( sleep_state != SH4_STATE_RUNNING ); nkeynes@736: nkeynes@617: while( sh4r.event_pending < nanosecs ) { nkeynes@736: sh4r.slice_cycle = sh4r.event_pending; nkeynes@736: if( sh4r.event_types & PENDING_EVENT ) { nkeynes@736: event_execute(); nkeynes@736: } nkeynes@736: if( sh4r.event_types & PENDING_IRQ ) { nkeynes@736: sh4_wakeup(); nkeynes@736: return sh4r.slice_cycle; nkeynes@736: } nkeynes@617: } nkeynes@617: sh4r.slice_cycle = nanosecs; nkeynes@617: return sh4r.slice_cycle; nkeynes@617: } nkeynes@617: nkeynes@617: nkeynes@617: /** nkeynes@401: * Compute the matrix tranform of fv given the matrix xf. nkeynes@401: * Both fv and xf are word-swapped as per the sh4r.fr banks nkeynes@401: */ nkeynes@905: void FASTCALL sh4_ftrv( float *target ) nkeynes@401: { nkeynes@401: float fv[4] = { target[1], target[0], target[3], target[2] }; nkeynes@669: target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] + nkeynes@736: sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3]; nkeynes@669: target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] + nkeynes@736: sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3]; nkeynes@669: target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] + nkeynes@736: sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3]; nkeynes@669: target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] + nkeynes@736: sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3]; nkeynes@401: } nkeynes@401: nkeynes@597: gboolean sh4_has_page( sh4vma_t vma ) nkeynes@597: { nkeynes@597: sh4addr_t addr = mmu_vma_to_phys_disasm(vma); nkeynes@597: return addr != MMU_VMA_ERROR && mem_has_page(addr); nkeynes@597: }