Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 1171:d644413208a3
prev1125:9dd5dee45db9
next1182:b38a327ad8fa
author Nathan Keynes <nkeynes@lxdream.org>
date Sun Sep 18 08:24:27 2011 +1000 (12 years ago)
permissions -rw-r--r--
last change Include stdint.h before libisofs.h - needed for more recent versions
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "cpu.h"
    27 #include "mem.h"
    28 #include "clock.h"
    29 #include "eventq.h"
    30 #include "syscall.h"
    31 #include "sh4/intc.h"
    32 #include "sh4/mmu.h"
    33 #include "sh4/sh4core.h"
    34 #include "sh4/sh4dasm.h"
    35 #include "sh4/sh4mmio.h"
    36 #include "sh4/sh4stat.h"
    37 #include "sh4/sh4trans.h"
    38 #include "xlat/xltcache.h"
    40 #ifndef M_PI
    41 #define M_PI        3.14159265358979323846264338327950288
    42 #endif
    44 void sh4_init( void );
    45 void sh4_poweron_reset( void );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length );
    51 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length );
    52 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length );
    53 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length );
    55 uint32_t sh4_run_slice( uint32_t );
    57 /* Note: this must match GDB's ordering */
    58 const struct reg_desc_struct sh4_reg_map[] = 
    59   { {"R0", REG_TYPE_INT, &sh4r.r[0]}, {"R1", REG_TYPE_INT, &sh4r.r[1]},
    60     {"R2", REG_TYPE_INT, &sh4r.r[2]}, {"R3", REG_TYPE_INT, &sh4r.r[3]},
    61     {"R4", REG_TYPE_INT, &sh4r.r[4]}, {"R5", REG_TYPE_INT, &sh4r.r[5]},
    62     {"R6", REG_TYPE_INT, &sh4r.r[6]}, {"R7", REG_TYPE_INT, &sh4r.r[7]},
    63     {"R8", REG_TYPE_INT, &sh4r.r[8]}, {"R9", REG_TYPE_INT, &sh4r.r[9]},
    64     {"R10",REG_TYPE_INT, &sh4r.r[10]}, {"R11",REG_TYPE_INT, &sh4r.r[11]},
    65     {"R12",REG_TYPE_INT, &sh4r.r[12]}, {"R13",REG_TYPE_INT, &sh4r.r[13]},
    66     {"R14",REG_TYPE_INT, &sh4r.r[14]}, {"R15",REG_TYPE_INT, &sh4r.r[15]},
    67     {"PC", REG_TYPE_INT, &sh4r.pc}, {"PR", REG_TYPE_INT, &sh4r.pr},
    68     {"GBR", REG_TYPE_INT, &sh4r.gbr}, {"VBR",REG_TYPE_INT, &sh4r.vbr}, 
    69     {"MACH",REG_TYPE_INT, ((uint32_t *)&sh4r.mac)+1}, {"MACL",REG_TYPE_INT, &sh4r.mac},
    70     {"SR", REG_TYPE_INT, &sh4r.sr},
    71     {"FPUL", REG_TYPE_INT, &sh4r.fpul.i}, {"FPSCR", REG_TYPE_INT, &sh4r.fpscr},
    73     {"FR0", REG_TYPE_FLOAT, &sh4r.fr[0][1] },{"FR1", REG_TYPE_FLOAT, &sh4r.fr[0][0]},
    74     {"FR2", REG_TYPE_FLOAT, &sh4r.fr[0][3] },{"FR3", REG_TYPE_FLOAT, &sh4r.fr[0][2]},
    75     {"FR4", REG_TYPE_FLOAT, &sh4r.fr[0][5] },{"FR5", REG_TYPE_FLOAT, &sh4r.fr[0][4]},
    76     {"FR6", REG_TYPE_FLOAT, &sh4r.fr[0][7] },{"FR7", REG_TYPE_FLOAT, &sh4r.fr[0][6]},
    77     {"FR8", REG_TYPE_FLOAT, &sh4r.fr[0][9] },{"FR9", REG_TYPE_FLOAT, &sh4r.fr[0][8]},
    78     {"FR10", REG_TYPE_FLOAT, &sh4r.fr[0][11] },{"FR11", REG_TYPE_FLOAT, &sh4r.fr[0][10]},
    79     {"FR12", REG_TYPE_FLOAT, &sh4r.fr[0][13] },{"FR13", REG_TYPE_FLOAT, &sh4r.fr[0][12]},
    80     {"FR14", REG_TYPE_FLOAT, &sh4r.fr[0][15] },{"FR15", REG_TYPE_FLOAT, &sh4r.fr[0][14]},
    82     {"SSR",REG_TYPE_INT, &sh4r.ssr}, {"SPC", REG_TYPE_INT, &sh4r.spc},
    84     {"R0B0", REG_TYPE_INT, NULL}, {"R1B0", REG_TYPE_INT, NULL},
    85     {"R2B0", REG_TYPE_INT, NULL}, {"R3B0", REG_TYPE_INT, NULL},
    86     {"R4B0", REG_TYPE_INT, NULL}, {"R5B0", REG_TYPE_INT, NULL},
    87     {"R6B0", REG_TYPE_INT, NULL}, {"R7B0", REG_TYPE_INT, NULL},
    88     {"R0B1", REG_TYPE_INT, NULL}, {"R1B1", REG_TYPE_INT, NULL},
    89     {"R2B1", REG_TYPE_INT, NULL}, {"R3B1", REG_TYPE_INT, NULL},
    90     {"R4B1", REG_TYPE_INT, NULL}, {"R5B1", REG_TYPE_INT, NULL},
    91     {"R6B1", REG_TYPE_INT, NULL}, {"R7B1", REG_TYPE_INT, NULL},
    93     {"SGR",REG_TYPE_INT, &sh4r.sgr}, {"DBR", REG_TYPE_INT, &sh4r.dbr},
    95     {"XF0", REG_TYPE_FLOAT, &sh4r.fr[1][1] },{"XF1", REG_TYPE_FLOAT, &sh4r.fr[1][0]},
    96     {"XF2", REG_TYPE_FLOAT, &sh4r.fr[1][3] },{"XF3", REG_TYPE_FLOAT, &sh4r.fr[1][2]},
    97     {"XF4", REG_TYPE_FLOAT, &sh4r.fr[1][5] },{"XF5", REG_TYPE_FLOAT, &sh4r.fr[1][4]},
    98     {"XF6", REG_TYPE_FLOAT, &sh4r.fr[1][7] },{"XF7", REG_TYPE_FLOAT, &sh4r.fr[1][6]},
    99     {"XF8", REG_TYPE_FLOAT, &sh4r.fr[1][9] },{"XF9", REG_TYPE_FLOAT, &sh4r.fr[1][8]},
   100     {"XF10", REG_TYPE_FLOAT, &sh4r.fr[1][11] },{"XF11", REG_TYPE_FLOAT, &sh4r.fr[1][10]},
   101     {"XF12", REG_TYPE_FLOAT, &sh4r.fr[1][13] },{"XF13", REG_TYPE_FLOAT, &sh4r.fr[1][12]},
   102     {"XF14", REG_TYPE_FLOAT, &sh4r.fr[1][15] },{"XF15", REG_TYPE_FLOAT, &sh4r.fr[1][14]},
   104     {NULL, 0, NULL} };
   106 void *sh4_get_register( int reg )
   107 {
   108     if( reg < 0 || reg >= 94 ) {
   109         return NULL;
   110     } else if( reg < 43 ) {
   111         return sh4_reg_map[reg].value;
   112     } else if( reg < 51 ) {
   113         /* r0b0..r7b0 */
   114         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   115             /* bank 1 is primary */
   116             return &sh4r.r_bank[reg-43];
   117         } else {
   118             return &sh4r.r[reg-43];
   119         }
   120     } else if( reg < 59 ) {
   121         /* r0b1..r7b1 */
   122         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   123             /* bank 1 is primary */
   124             return &sh4r.r[reg-43];
   125         } else {
   126             return &sh4r.r_bank[reg-43];
   127         }
   128     } else {
   129         return NULL; /* not supported at the moment */
   130     }
   131 }
   134 const struct cpu_desc_struct sh4_cpu_desc = 
   135     { "SH4", sh4_disasm_instruction, sh4_get_register, sh4_has_page,
   136             sh4_debug_read_phys, sh4_debug_write_phys, sh4_debug_read_vma, sh4_debug_write_vma,
   137             sh4_execute_instruction, 
   138       sh4_set_breakpoint, sh4_clear_breakpoint, sh4_get_breakpoint, 2,
   139       (char *)&sh4r, sizeof(sh4r), sh4_reg_map, 23, 59,
   140       &sh4r.pc };
   142 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, 
   143         sh4_start, sh4_run_slice, sh4_stop,
   144         sh4_save_state, sh4_load_state };
   146 struct sh4_registers sh4r __attribute__((aligned(16)));
   147 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
   148 int sh4_breakpoint_count = 0;
   150 gboolean sh4_starting = FALSE;
   151 static gboolean sh4_use_translator = FALSE;
   152 static jmp_buf sh4_exit_jmp_buf;
   153 static gboolean sh4_running = FALSE;
   154 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
   156 /* At the moment this is a dummy event to mark the end of the
   157  * timeslice
   158  */
   159 void sh4_dummy_event(int eventid)
   160 {
   161 }
   163 void sh4_set_core( sh4core_t core )
   164 {
   165     // No-op if the translator was not built
   166 #ifdef SH4_TRANSLATOR
   167     if( core != SH4_INTERPRET ) {
   168         sh4_translate_init();
   169         sh4_use_translator = TRUE;
   170         if( core == SH4_SHADOW ) {
   171             sh4_shadow_init();
   172         }
   173     } else {
   174         sh4_use_translator = FALSE;
   175     }
   176 #endif
   177 }
   179 gboolean sh4_translate_is_enabled()
   180 {
   181     return sh4_use_translator;
   182 }
   184 void sh4_init(void)
   185 {
   186     register_io_regions( mmio_list_sh4mmio );
   187     register_event_callback( EVENT_ENDTIMESLICE, sh4_dummy_event );
   188     MMU_init();
   189     TMU_init();
   190     xlat_cache_init();
   191     sh4_poweron_reset();
   192 #ifdef ENABLE_SH4STATS
   193     sh4_stats_reset();
   194 #endif
   195 }
   197 void sh4_start(void)
   198 {
   199     sh4_starting = TRUE;
   200 }
   202 void sh4_poweron_reset(void)
   203 {
   204     /* zero everything out, for the sake of having a consistent state. */
   205     memset( &sh4r, 0, sizeof(sh4r) );
   206     if(	sh4_use_translator ) {
   207         xlat_flush_cache();
   208     }
   210     /* Resume running if we were halted */
   211     sh4r.sh4_state = SH4_STATE_RUNNING;
   213     sh4r.pc    = 0xA0000000;
   214     sh4r.new_pc= 0xA0000002;
   215     sh4r.vbr   = 0x00000000;
   216     sh4r.fpscr = 0x00040001;
   217     sh4_write_sr(0x700000F0);
   219     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   220     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   222     /* Peripheral modules */
   223     CPG_reset();
   224     INTC_reset();
   225     PMM_reset();
   226     TMU_reset();
   227     SCIF_reset();
   228     CCN_reset();
   229     MMU_reset();
   230 }
   232 void sh4_stop(void)
   233 {
   234     if(	sh4_use_translator ) {
   235         /* If we were running with the translator, update new_pc and in_delay_slot */
   236         sh4r.new_pc = sh4r.pc+2;
   237         sh4r.in_delay_slot = FALSE;
   238     }
   240 }
   242 /**
   243  * Execute a timeslice using translated code only (ie translate/execute loop)
   244  */
   245 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   246 {
   247     sh4r.slice_cycle = 0;
   249     /* Setup for sudden vm exits */
   250     switch( setjmp(sh4_exit_jmp_buf) ) {
   251     case CORE_EXIT_BREAKPOINT:
   252         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   253         /* fallthrough */
   254     case CORE_EXIT_HALT:
   255         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   256             TMU_run_slice( sh4r.slice_cycle );
   257             SCIF_run_slice( sh4r.slice_cycle );
   258             PMM_run_slice( sh4r.slice_cycle );
   259             dreamcast_stop();
   260             return sh4r.slice_cycle;
   261         }
   262     case CORE_EXIT_SYSRESET:
   263         dreamcast_reset();
   264         break;
   265     case CORE_EXIT_SLEEP:
   266         break;  
   267     case CORE_EXIT_FLUSH_ICACHE:
   268         xlat_flush_cache();
   269         break;
   270     }
   272     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   273         sh4_sleep_run_slice(nanosecs);
   274     } else {
   275         sh4_running = TRUE;
   277         /* Execute the core's real slice */
   278 #ifdef SH4_TRANSLATOR
   279         if( sh4_use_translator ) {
   280             sh4_translate_run_slice(nanosecs);
   281         } else {
   282             sh4_emulate_run_slice(nanosecs);
   283         }
   284 #else
   285         sh4_emulate_run_slice(nanosecs);
   286 #endif
   287     }
   289     /* And finish off the peripherals afterwards */
   291     sh4_running = FALSE;
   292     sh4_starting = FALSE;
   293     sh4r.slice_cycle = nanosecs;
   294     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   295         TMU_run_slice( nanosecs );
   296         SCIF_run_slice( nanosecs );
   297         PMM_run_slice( sh4r.slice_cycle );
   298     }
   299     return nanosecs;   
   300 }
   302 void sh4_core_exit( int exit_code )
   303 {
   304     if( sh4_running ) {
   305 #ifdef SH4_TRANSLATOR
   306         if( sh4_use_translator ) {
   307             if( exit_code == CORE_EXIT_EXCEPTION ) {
   308                 sh4_translate_exception_exit_recover();
   309             } else {
   310                 sh4_translate_exit_recover();
   311             }
   312         }
   313 #endif
   314         if( exit_code != CORE_EXIT_EXCEPTION &&
   315             exit_code != CORE_EXIT_BREAKPOINT ) {
   316             sh4_finalize_instruction();
   317         }
   318         // longjmp back into sh4_run_slice
   319         sh4_running = FALSE;
   320         longjmp(sh4_exit_jmp_buf, exit_code);
   321     }
   322 }
   324 void sh4_save_state( FILE *f )
   325 {
   326     if(	sh4_use_translator ) {
   327         /* If we were running with the translator, update new_pc and in_delay_slot */
   328         sh4r.new_pc = sh4r.pc+2;
   329         sh4r.in_delay_slot = FALSE;
   330     }
   332     fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   333     MMU_save_state( f );
   334     CCN_save_state( f );
   335     PMM_save_state( f );
   336     INTC_save_state( f );
   337     TMU_save_state( f );
   338     SCIF_save_state( f );
   339 }
   341 int sh4_load_state( FILE * f )
   342 {
   343     if(	sh4_use_translator ) {
   344         xlat_flush_cache();
   345     }
   346     fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   347     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   348     MMU_load_state( f );
   349     CCN_load_state( f );
   350     PMM_load_state( f );
   351     INTC_load_state( f );
   352     TMU_load_state( f );
   353     return SCIF_load_state( f );
   354 }
   356 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   357 {
   358     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   359     sh4_breakpoints[sh4_breakpoint_count].type = type;
   360     if( sh4_use_translator ) {
   361         xlat_invalidate_word( pc );
   362     }
   363     sh4_breakpoint_count++;
   364 }
   366 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   367 {
   368     int i;
   370     for( i=0; i<sh4_breakpoint_count; i++ ) {
   371         if( sh4_breakpoints[i].address == pc && 
   372                 sh4_breakpoints[i].type == type ) {
   373             while( ++i < sh4_breakpoint_count ) {
   374                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   375                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   376             }
   377             if( sh4_use_translator ) {
   378                 xlat_invalidate_word( pc );
   379             }
   380             sh4_breakpoint_count--;
   381             return TRUE;
   382         }
   383     }
   384     return FALSE;
   385 }
   387 int sh4_get_breakpoint( uint32_t pc )
   388 {
   389     int i;
   390     for( i=0; i<sh4_breakpoint_count; i++ ) {
   391         if( sh4_breakpoints[i].address == pc )
   392             return sh4_breakpoints[i].type;
   393     }
   394     return 0;
   395 }
   397 void sh4_set_pc( int pc )
   398 {
   399     sh4r.pc = pc;
   400     sh4r.new_pc = pc+2;
   401 }
   403 /**
   404  * Dump all SH4 core information for crash-dump purposes
   405  */
   406 void sh4_crashdump()
   407 {
   408     cpu_print_registers( stderr, &sh4_cpu_desc );
   409 #ifdef SH4_TRANSLATOR
   410     if( sh4_use_translator ) {
   411         sh4_translate_crashdump();
   412     } /* Nothing really to print for emu core */
   413 #endif
   414 }
   417 /******************************* Support methods ***************************/
   419 static void sh4_switch_banks( )
   420 {
   421     uint32_t tmp[8];
   423     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   424     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   425     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   426 }
   428 void FASTCALL sh4_switch_fr_banks()
   429 {
   430     int i;
   431     for( i=0; i<16; i++ ) {
   432         float tmp = sh4r.fr[0][i];
   433         sh4r.fr[0][i] = sh4r.fr[1][i];
   434         sh4r.fr[1][i] = tmp;
   435     }
   436 }
   438 void FASTCALL sh4_write_sr( uint32_t newval )
   439 {
   440     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   441     int newbank = (newval&SR_MDRB) == SR_MDRB;
   442     if( oldbank != newbank )
   443         sh4_switch_banks();
   444     sh4r.sr = newval & SR_MASK;
   445     sh4r.t = (newval&SR_T) ? 1 : 0;
   446     sh4r.s = (newval&SR_S) ? 1 : 0;
   447     sh4r.m = (newval&SR_M) ? 1 : 0;
   448     sh4r.q = (newval&SR_Q) ? 1 : 0;
   449     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   450     intc_mask_changed();
   451 }
   453 void FASTCALL sh4_write_fpscr( uint32_t newval )
   454 {
   455     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   456         sh4_switch_fr_banks();
   457     }
   458     sh4r.fpscr = newval & FPSCR_MASK;
   459     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   460 }
   462 uint32_t FASTCALL sh4_read_sr( void )
   463 {
   464     /* synchronize sh4r.sr with the various bitflags */
   465     sh4r.sr &= SR_MQSTMASK;
   466     if( sh4r.t ) sh4r.sr |= SR_T;
   467     if( sh4r.s ) sh4r.sr |= SR_S;
   468     if( sh4r.m ) sh4r.sr |= SR_M;
   469     if( sh4r.q ) sh4r.sr |= SR_Q;
   470     return sh4r.sr;
   471 }
   473 /**
   474  * Raise a CPU reset exception with the specified exception code.
   475  */
   476 void FASTCALL sh4_raise_reset( int code )
   477 {
   478     MMIO_WRITE(MMU,EXPEVT,code);
   479     sh4r.vbr = 0x00000000;
   480     sh4r.pc = 0xA0000000;
   481     sh4r.new_pc = sh4r.pc + 2;
   482     sh4r.in_delay_slot = 0;
   483     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)&(~SR_FD) );
   485     /* Peripheral manual reset (FIXME: incomplete) */
   486     INTC_reset();
   487     SCIF_reset();
   488     MMU_reset();
   489 }
   491 void FASTCALL sh4_raise_tlb_multihit( sh4vma_t vpn )
   492 {
   493     MMIO_WRITE( MMU, TEA, vpn );
   494     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   495     sh4_raise_reset( EXC_TLB_MULTI_HIT );
   496 }
   498 /**
   499  * Raise a general CPU exception for the specified exception code.
   500  * (NOT for TRAPA or TLB exceptions)
   501  */
   502 void FASTCALL sh4_raise_exception( int code )
   503 {
   504     if( sh4r.sr & SR_BL ) {
   505         sh4_raise_reset( EXC_MANUAL_RESET );
   506     } else {
   507         sh4r.spc = sh4r.pc;
   508         sh4r.ssr = sh4_read_sr();
   509         sh4r.sgr = sh4r.r[15];
   510         MMIO_WRITE(MMU,EXPEVT, code);
   511         sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   512         sh4r.new_pc = sh4r.pc + 2;
   513         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   514         sh4r.in_delay_slot = 0;
   515     }
   516 }
   518 void FASTCALL sh4_raise_trap( int trap )
   519 {
   520     MMIO_WRITE( MMU, TRA, trap<<2 );
   521     MMIO_WRITE( MMU, EXPEVT, EXC_TRAP );
   522     sh4r.spc = sh4r.pc;
   523     sh4r.ssr = sh4_read_sr();
   524     sh4r.sgr = sh4r.r[15];
   525     sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   526     sh4r.new_pc = sh4r.pc + 2;
   527     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   528     sh4r.in_delay_slot = 0;
   529 }
   531 void FASTCALL sh4_raise_tlb_exception( int code, sh4vma_t vpn )
   532 {
   533     MMIO_WRITE( MMU, TEA, vpn );
   534     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   535     MMIO_WRITE( MMU, EXPEVT, code );
   536     sh4r.spc = sh4r.pc;
   537     sh4r.ssr = sh4_read_sr();
   538     sh4r.sgr = sh4r.r[15];
   539     sh4r.pc = sh4r.vbr + EXV_TLBMISS;
   540     sh4r.new_pc = sh4r.pc + 2;
   541     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   542     sh4r.in_delay_slot = 0;
   543 }
   545 void FASTCALL sh4_accept_interrupt( void )
   546 {
   547     uint32_t code = intc_accept_interrupt();
   548     MMIO_WRITE( MMU, INTEVT, code );
   549     sh4r.ssr = sh4_read_sr();
   550     sh4r.spc = sh4r.pc;
   551     sh4r.sgr = sh4r.r[15];
   552     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   553     sh4r.pc = sh4r.vbr + 0x600;
   554     sh4r.new_pc = sh4r.pc + 2;
   555     sh4r.in_delay_slot = 0;
   556 }
   558 void FASTCALL signsat48( void )
   559 {
   560     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   561         sh4r.mac = 0xFFFF800000000000LL;
   562     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   563         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   564 }
   566 void FASTCALL sh4_fsca( uint32_t anglei, float *fr )
   567 {
   568     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   569     *fr++ = cosf(angle);
   570     *fr = sinf(angle);
   571 }
   573 /**
   574  * Enter sleep mode (eg by executing a SLEEP instruction).
   575  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   576  * are up to date.
   577  */
   578 void FASTCALL sh4_sleep(void)
   579 {
   580     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   581         sh4r.sh4_state = SH4_STATE_STANDBY;
   582         /* Bring all running peripheral modules up to date, and then halt them. */
   583         TMU_run_slice( sh4r.slice_cycle );
   584         SCIF_run_slice( sh4r.slice_cycle );
   585         PMM_run_slice( sh4r.slice_cycle );
   586     } else {
   587         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   588             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   589             /* Halt DMAC but other peripherals still running */
   591         } else {
   592             sh4r.sh4_state = SH4_STATE_SLEEP;
   593         }
   594     }
   595     sh4_core_exit( CORE_EXIT_SLEEP );
   596 }
   598 /**
   599  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   600  * and restarts any peripheral devices that were stopped.
   601  */
   602 void sh4_wakeup(void)
   603 {
   604     switch( sh4r.sh4_state ) {
   605     case SH4_STATE_STANDBY:
   606         break;
   607     case SH4_STATE_DEEP_SLEEP:
   608         break;
   609     case SH4_STATE_SLEEP:
   610         break;
   611     }
   612     sh4r.sh4_state = SH4_STATE_RUNNING;
   613 }
   615 /**
   616  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   617  * Returns when either the SH4 wakes up (interrupt received) or the end of
   618  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   619  * returns the same value.
   620  */
   621 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   622 {
   623     assert( sh4r.sh4_state != SH4_STATE_RUNNING );
   625     while( sh4r.event_pending < nanosecs ) {
   626         sh4r.slice_cycle = sh4r.event_pending;
   627         if( sh4r.event_types & PENDING_EVENT ) {
   628             event_execute();
   629         }
   630         if( sh4r.event_types & PENDING_IRQ ) {
   631             sh4_wakeup();
   632             return sh4r.slice_cycle;
   633         }
   634     }
   635     if( sh4r.slice_cycle < nanosecs )
   636         sh4r.slice_cycle = nanosecs;
   637     return sh4r.slice_cycle;
   638 }
   641 /**
   642  * Compute the matrix tranform of fv given the matrix xf.
   643  * Both fv and xf are word-swapped as per the sh4r.fr banks
   644  */
   645 void FASTCALL sh4_ftrv( float *target )
   646 {
   647     float fv[4] = { target[1], target[0], target[3], target[2] };
   648     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   649     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   650     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   651     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   652     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   653     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   654     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   655     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   656 }
   658 gboolean sh4_has_page( sh4vma_t vma )
   659 {
   660     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   661     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   662 }
   664 /**
   665  * Go through ext_address_space page by page
   666  */
   667 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length )
   668 {
   669     /* Quick and very dirty */
   670     unsigned char *region = mem_get_region(addr);
   671     if( region == NULL ) {
   672         memset( buf, 0, length );
   673     } else {
   674         memcpy( buf, region, length );
   675     }
   676     return length;
   677 }
   679 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length )
   680 {
   681     unsigned char *region = mem_get_region(addr);
   682     if( region != NULL ) {
   683         memcpy( region, buf, length );
   684     }
   685     return length;
   686 }
   688 /**
   689  * Read virtual memory - for now just go 1K at a time 
   690  */
   691 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length )
   692 {
   693     if( IS_TLB_ENABLED() ) {
   694         size_t read_len = 0;
   695         while( length > 0 ) {
   696             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   697             if( phys == MMU_VMA_ERROR )
   698                 break;
   699             int next_len = 1024 - (phys&0x000003FF);
   700             if( next_len >= length ) {
   701                 next_len = length;
   702             }
   703             sh4_debug_read_phys( buf, phys, length );
   704             buf += next_len;
   705             addr += next_len;
   706             read_len += next_len; 
   707             length -= next_len;
   708         }
   709         return read_len;
   710     } else {
   711         return sh4_debug_read_phys( buf, addr, length );
   712     }
   713 }
   715 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length )
   716 {
   717     if( IS_TLB_ENABLED() ) {
   718         size_t read_len = 0;
   719         while( length > 0 ) {
   720             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   721             if( phys == MMU_VMA_ERROR )
   722                 break;
   723             int next_len = 1024 - (phys&0x000003FF);
   724             if( next_len >= length ) {
   725                 next_len = length;
   726             }
   727             sh4_debug_write_phys( phys, buf, length );
   728             buf += next_len;
   729             addr += next_len;
   730             read_len += next_len; 
   731             length -= next_len;
   732         }
   733         return read_len;
   734     } else {
   735         return sh4_debug_write_phys( addr, buf, length );
   736     }
   737 }
.