Search
lxdream.org :: lxdream/src/sh4/timer.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/timer.c
changeset 975:007bf7eb944f
prev929:fd8cb0c82f5f
next1124:aacaae9812ea
author nkeynes
date Tue Mar 24 11:15:57 2009 +0000 (15 years ago)
permissions -rw-r--r--
last change Add preliminary implementation of the GDB remote debugging server - attaches to
either or both the SH4 and ARM
file annotate diff log raw
nkeynes@23
     1
/**
nkeynes@561
     2
 * $Id$
nkeynes@23
     3
 * 
nkeynes@23
     4
 * SH4 Timer/Clock peripheral modules (CPG, TMU, RTC), combined together to
nkeynes@23
     5
 * keep things simple (they intertwine a bit).
nkeynes@23
     6
 *
nkeynes@23
     7
 * Copyright (c) 2005 Nathan Keynes.
nkeynes@23
     8
 *
nkeynes@23
     9
 * This program is free software; you can redistribute it and/or modify
nkeynes@23
    10
 * it under the terms of the GNU General Public License as published by
nkeynes@23
    11
 * the Free Software Foundation; either version 2 of the License, or
nkeynes@23
    12
 * (at your option) any later version.
nkeynes@23
    13
 *
nkeynes@23
    14
 * This program is distributed in the hope that it will be useful,
nkeynes@23
    15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
nkeynes@23
    16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
nkeynes@23
    17
 * GNU General Public License for more details.
nkeynes@23
    18
 */
nkeynes@23
    19
nkeynes@619
    20
#include <assert.h>
nkeynes@619
    21
#include "lxdream.h"
nkeynes@23
    22
#include "mem.h"
nkeynes@23
    23
#include "clock.h"
nkeynes@619
    24
#include "eventq.h"
nkeynes@619
    25
#include "sh4/sh4core.h"
nkeynes@619
    26
#include "sh4/sh4mmio.h"
nkeynes@619
    27
#include "sh4/intc.h"
nkeynes@23
    28
nkeynes@23
    29
/********************************* CPG *************************************/
nkeynes@859
    30
/* This is the base clock from which all other clocks are derived. 
nkeynes@859
    31
 * Note: The real clock runs at 33Mhz, which is multiplied by the PLL to
nkeynes@859
    32
 * run the instruction clock at 200Mhz. For sake of simplicity/precision,
nkeynes@859
    33
 * we instead use 200Mhz as the base rate and divide everything down instead.
nkeynes@859
    34
 **/
nkeynes@53
    35
uint32_t sh4_input_freq = SH4_BASE_RATE;
nkeynes@53
    36
nkeynes@414
    37
uint32_t sh4_cpu_multiplier = 2000; /* = 0.5 * frequency */
nkeynes@414
    38
nkeynes@53
    39
uint32_t sh4_cpu_freq = SH4_BASE_RATE;
nkeynes@859
    40
uint32_t sh4_bus_freq = SH4_BASE_RATE / 2;
nkeynes@859
    41
uint32_t sh4_peripheral_freq = SH4_BASE_RATE / 4;
nkeynes@53
    42
nkeynes@53
    43
uint32_t sh4_cpu_period = 1000 / SH4_BASE_RATE; /* in nanoseconds */
nkeynes@859
    44
uint32_t sh4_bus_period = 2* 1000 / SH4_BASE_RATE;
nkeynes@859
    45
uint32_t sh4_peripheral_period = 4 * 2000 / SH4_BASE_RATE;
nkeynes@23
    46
nkeynes@929
    47
MMIO_REGION_READ_FN( CPG, reg )
nkeynes@23
    48
{
nkeynes@929
    49
    return MMIO_READ( CPG, reg&0xFFF );
nkeynes@23
    50
}
nkeynes@975
    51
MMIO_REGION_READ_DEFSUBFNS(CPG)
nkeynes@23
    52
nkeynes@53
    53
/* CPU + bus dividers (note officially only the first 6 values are valid) */
nkeynes@53
    54
int ifc_divider[8] = { 1, 2, 3, 4, 5, 8, 8, 8 };
nkeynes@53
    55
/* Peripheral clock dividers (only first 5 are officially valid) */
nkeynes@53
    56
int pfc_divider[8] = { 2, 3, 4, 6, 8, 8, 8, 8 };
nkeynes@53
    57
nkeynes@929
    58
MMIO_REGION_WRITE_FN( CPG, reg, val )
nkeynes@23
    59
{
nkeynes@53
    60
    uint32_t div;
nkeynes@859
    61
    uint32_t primary_clock = sh4_input_freq;
nkeynes@929
    62
    reg &= 0xFFF;
nkeynes@53
    63
    switch( reg ) {
nkeynes@53
    64
    case FRQCR: /* Frequency control */
nkeynes@859
    65
        if( (val & FRQCR_PLL1EN) == 0 )
nkeynes@859
    66
            primary_clock /= 6;
nkeynes@736
    67
        div = ifc_divider[(val >> 6) & 0x07];
nkeynes@859
    68
        sh4_cpu_freq = primary_clock / div;
nkeynes@736
    69
        sh4_cpu_period = sh4_cpu_multiplier * div / sh4_input_freq;
nkeynes@736
    70
        div = ifc_divider[(val >> 3) & 0x07];
nkeynes@859
    71
        sh4_bus_freq = primary_clock / div;
nkeynes@736
    72
        sh4_bus_period = 1000 * div / sh4_input_freq;
nkeynes@736
    73
        div = pfc_divider[val & 0x07];
nkeynes@859
    74
        sh4_peripheral_freq = primary_clock / div;
nkeynes@736
    75
        sh4_peripheral_period = 1000 * div / sh4_input_freq;
nkeynes@53
    76
nkeynes@736
    77
        /* Update everything that depends on the peripheral frequency */
nkeynes@736
    78
        SCIF_update_line_speed();
nkeynes@736
    79
        break;
nkeynes@53
    80
    case WTCSR: /* Watchdog timer */
nkeynes@736
    81
        break;
nkeynes@53
    82
    }
nkeynes@736
    83
nkeynes@23
    84
    MMIO_WRITE( CPG, reg, val );
nkeynes@23
    85
}
nkeynes@23
    86
nkeynes@260
    87
/**
nkeynes@260
    88
 * We don't really know what the default reset value is as it's determined
nkeynes@260
    89
 * by the mode select pins. This is the standard value that the BIOS sets,
nkeynes@260
    90
 * however, so it works for now.
nkeynes@260
    91
 */
nkeynes@260
    92
void CPG_reset( )
nkeynes@260
    93
{
nkeynes@260
    94
    mmio_region_CPG_write( FRQCR, 0x0E0A );
nkeynes@260
    95
}
nkeynes@260
    96
nkeynes@260
    97
nkeynes@23
    98
/********************************** RTC *************************************/
nkeynes@23
    99
nkeynes@53
   100
uint32_t rtc_output_period;
nkeynes@53
   101
nkeynes@929
   102
MMIO_REGION_READ_FN( RTC, reg )
nkeynes@23
   103
{
nkeynes@929
   104
    return MMIO_READ( RTC, reg &0xFFF );
nkeynes@23
   105
}
nkeynes@975
   106
MMIO_REGION_READ_DEFSUBFNS(RTC)
nkeynes@23
   107
nkeynes@929
   108
MMIO_REGION_WRITE_FN( RTC, reg, val )
nkeynes@23
   109
{
nkeynes@929
   110
    MMIO_WRITE( RTC, reg &0xFFF, val );
nkeynes@23
   111
}
nkeynes@23
   112
nkeynes@23
   113
/********************************** TMU *************************************/
nkeynes@23
   114
nkeynes@619
   115
#define TMU_IS_RUNNING(timer)  (MMIO_READ(TMU,TSTR) & (1<<timer))
nkeynes@619
   116
nkeynes@260
   117
uint32_t TMU_count( int timer, uint32_t nanosecs );
nkeynes@260
   118
nkeynes@619
   119
void TMU_event_callback( int eventid )
nkeynes@619
   120
{
nkeynes@619
   121
    TMU_count( eventid - EVENT_TMU0, sh4r.slice_cycle );
nkeynes@619
   122
}
nkeynes@619
   123
nkeynes@619
   124
void TMU_init(void)
nkeynes@619
   125
{
nkeynes@619
   126
    register_event_callback( EVENT_TMU0, TMU_event_callback );
nkeynes@619
   127
    register_event_callback( EVENT_TMU1, TMU_event_callback );
nkeynes@619
   128
    register_event_callback( EVENT_TMU2, TMU_event_callback );
nkeynes@619
   129
}    
nkeynes@260
   130
nkeynes@53
   131
#define TCR_ICPF 0x0200
nkeynes@53
   132
#define TCR_UNF  0x0100
nkeynes@53
   133
#define TCR_UNIE 0x0020
nkeynes@53
   134
nkeynes@115
   135
#define TCR_IRQ_ACTIVE (TCR_UNF|TCR_UNIE)
nkeynes@115
   136
nkeynes@53
   137
struct TMU_timer {
nkeynes@53
   138
    uint32_t timer_period;
nkeynes@53
   139
    uint32_t timer_remainder; /* left-over cycles from last count */
nkeynes@53
   140
    uint32_t timer_run; /* cycles already run from this slice */
nkeynes@53
   141
};
nkeynes@53
   142
nkeynes@619
   143
static struct TMU_timer TMU_timers[3];
nkeynes@23
   144
nkeynes@115
   145
void TMU_set_timer_control( int timer,  int tcr )
nkeynes@53
   146
{
nkeynes@53
   147
    uint32_t period = 1;
nkeynes@115
   148
    uint32_t oldtcr = MMIO_READ( TMU, TCR0 + (12*timer) );
nkeynes@115
   149
nkeynes@115
   150
    if( (oldtcr & TCR_UNF) == 0 ) {
nkeynes@736
   151
        tcr = tcr & (~TCR_UNF);
nkeynes@115
   152
    } else {
nkeynes@736
   153
        if( ((oldtcr & TCR_UNIE) == 0) && 
nkeynes@736
   154
                (tcr & TCR_IRQ_ACTIVE) == TCR_IRQ_ACTIVE ) {
nkeynes@736
   155
            intc_raise_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   156
        } else if( (oldtcr & TCR_UNIE) != 0 && 
nkeynes@736
   157
                (tcr & TCR_IRQ_ACTIVE) != TCR_IRQ_ACTIVE ) {
nkeynes@736
   158
            intc_clear_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   159
        }
nkeynes@115
   160
    }
nkeynes@115
   161
nkeynes@53
   162
    switch( tcr & 0x07 ) {
nkeynes@53
   163
    case 0:
nkeynes@736
   164
        period = sh4_peripheral_period << 2 ;
nkeynes@736
   165
        break;
nkeynes@53
   166
    case 1: 
nkeynes@736
   167
        period = sh4_peripheral_period << 4;
nkeynes@736
   168
        break;
nkeynes@53
   169
    case 2:
nkeynes@736
   170
        period = sh4_peripheral_period << 6;
nkeynes@736
   171
        break;
nkeynes@53
   172
    case 3: 
nkeynes@736
   173
        period = sh4_peripheral_period << 8;
nkeynes@736
   174
        break;
nkeynes@53
   175
    case 4:
nkeynes@736
   176
        period = sh4_peripheral_period << 10;
nkeynes@736
   177
        break;
nkeynes@53
   178
    case 5:
nkeynes@736
   179
        /* Illegal value. */
nkeynes@736
   180
        ERROR( "TMU %d period set to illegal value (5)", timer );
nkeynes@736
   181
        period = sh4_peripheral_period << 12; /* for something to do */
nkeynes@736
   182
        break;
nkeynes@53
   183
    case 6:
nkeynes@736
   184
        period = rtc_output_period;
nkeynes@736
   185
        break;
nkeynes@53
   186
    case 7:
nkeynes@736
   187
        /* External clock... Hrm? */
nkeynes@736
   188
        period = sh4_peripheral_period; /* I dunno... */
nkeynes@736
   189
        break;
nkeynes@53
   190
    }
nkeynes@53
   191
    TMU_timers[timer].timer_period = period;
nkeynes@115
   192
nkeynes@115
   193
    MMIO_WRITE( TMU, TCR0 + (12*timer), tcr );
nkeynes@53
   194
}
nkeynes@23
   195
nkeynes@619
   196
void TMU_schedule_timer( int timer )
nkeynes@619
   197
{
nkeynes@619
   198
    uint64_t duration = (uint64_t)((uint32_t)(MMIO_READ( TMU, TCNT0 + 12*timer )+1)) * 
nkeynes@736
   199
    (uint64_t)TMU_timers[timer].timer_period - TMU_timers[timer].timer_remainder;
nkeynes@619
   200
    event_schedule_long( EVENT_TMU0+timer, (uint32_t)(duration / 1000000000), 
nkeynes@736
   201
                         (uint32_t)(duration % 1000000000) );
nkeynes@619
   202
}
nkeynes@619
   203
nkeynes@53
   204
void TMU_start( int timer )
nkeynes@23
   205
{
nkeynes@260
   206
    TMU_timers[timer].timer_run = sh4r.slice_cycle;
nkeynes@53
   207
    TMU_timers[timer].timer_remainder = 0;
nkeynes@619
   208
    TMU_schedule_timer( timer );
nkeynes@53
   209
}
nkeynes@53
   210
nkeynes@264
   211
/**
nkeynes@264
   212
 * Stop the given timer. Run it up to the current time and leave it there.
nkeynes@264
   213
 */
nkeynes@53
   214
void TMU_stop( int timer )
nkeynes@53
   215
{
nkeynes@264
   216
    TMU_count( timer, sh4r.slice_cycle );
nkeynes@619
   217
    event_cancel( EVENT_TMU0+timer );
nkeynes@53
   218
}
nkeynes@53
   219
nkeynes@53
   220
/**
nkeynes@53
   221
 * Count the specified timer for a given number of nanoseconds.
nkeynes@53
   222
 */
nkeynes@53
   223
uint32_t TMU_count( int timer, uint32_t nanosecs ) 
nkeynes@53
   224
{
nkeynes@619
   225
    uint32_t run_ns = nanosecs + TMU_timers[timer].timer_remainder -
nkeynes@736
   226
    TMU_timers[timer].timer_run;
nkeynes@53
   227
    TMU_timers[timer].timer_remainder = 
nkeynes@736
   228
        run_ns % TMU_timers[timer].timer_period;
nkeynes@619
   229
    TMU_timers[timer].timer_run = nanosecs;
nkeynes@619
   230
    uint32_t count = run_ns / TMU_timers[timer].timer_period;
nkeynes@53
   231
    uint32_t value = MMIO_READ( TMU, TCNT0 + 12*timer );
nkeynes@53
   232
    uint32_t reset = MMIO_READ( TMU, TCOR0 + 12*timer );
nkeynes@53
   233
    if( count > value ) {
nkeynes@736
   234
        uint32_t tcr = MMIO_READ( TMU, TCR0 + 12*timer );
nkeynes@736
   235
        tcr |= TCR_UNF;
nkeynes@736
   236
        count -= value;
nkeynes@619
   237
        value = reset - (count % reset) + 1;
nkeynes@736
   238
        MMIO_WRITE( TMU, TCR0 + 12*timer, tcr );
nkeynes@736
   239
        if( tcr & TCR_UNIE ) 
nkeynes@736
   240
            intc_raise_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   241
        MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
nkeynes@736
   242
        TMU_schedule_timer(timer);
nkeynes@53
   243
    } else {
nkeynes@736
   244
        value -= count;
nkeynes@736
   245
        MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
nkeynes@23
   246
    }
nkeynes@53
   247
    return value;
nkeynes@23
   248
}
nkeynes@23
   249
nkeynes@929
   250
MMIO_REGION_READ_FN( TMU, reg )
nkeynes@929
   251
{
nkeynes@929
   252
    reg &= 0xFFF;
nkeynes@929
   253
    switch( reg ) {
nkeynes@929
   254
    case TCNT0:
nkeynes@929
   255
        TMU_count( 0, sh4r.slice_cycle );
nkeynes@929
   256
        break;
nkeynes@929
   257
    case TCNT1:
nkeynes@929
   258
        TMU_count( 1, sh4r.slice_cycle );
nkeynes@929
   259
        break;
nkeynes@929
   260
    case TCNT2:
nkeynes@929
   261
        TMU_count( 2, sh4r.slice_cycle );
nkeynes@929
   262
        break;
nkeynes@929
   263
    }
nkeynes@929
   264
    return MMIO_READ( TMU, reg );
nkeynes@929
   265
}
nkeynes@975
   266
MMIO_REGION_READ_DEFSUBFNS(TMU)
nkeynes@975
   267
nkeynes@929
   268
nkeynes@929
   269
MMIO_REGION_WRITE_FN( TMU, reg, val )
nkeynes@23
   270
{
nkeynes@53
   271
    uint32_t oldval;
nkeynes@53
   272
    int i;
nkeynes@929
   273
    reg &= 0xFFF;
nkeynes@23
   274
    switch( reg ) {
nkeynes@53
   275
    case TSTR:
nkeynes@736
   276
        oldval = MMIO_READ( TMU, TSTR );
nkeynes@736
   277
        for( i=0; i<3; i++ ) {
nkeynes@736
   278
            uint32_t tmp = 1<<i;
nkeynes@736
   279
            if( (oldval & tmp) != 0 && (val&tmp) == 0  )
nkeynes@736
   280
                TMU_stop(i);
nkeynes@736
   281
            else if( (oldval&tmp) == 0 && (val&tmp) != 0 )
nkeynes@736
   282
                TMU_start(i);
nkeynes@736
   283
        }
nkeynes@736
   284
        break;
nkeynes@53
   285
    case TCR0:
nkeynes@736
   286
        TMU_set_timer_control( 0, val );
nkeynes@736
   287
        return;
nkeynes@53
   288
    case TCR1:
nkeynes@736
   289
        TMU_set_timer_control( 1, val );
nkeynes@736
   290
        return;
nkeynes@53
   291
    case TCR2:
nkeynes@736
   292
        TMU_set_timer_control( 2, val );
nkeynes@736
   293
        return;
nkeynes@619
   294
    case TCNT0:
nkeynes@736
   295
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   296
        if( TMU_IS_RUNNING(0) ) { // reschedule
nkeynes@736
   297
            TMU_timers[0].timer_run = sh4r.slice_cycle;
nkeynes@736
   298
            TMU_schedule_timer( 0 );
nkeynes@736
   299
        }
nkeynes@736
   300
        return;
nkeynes@619
   301
    case TCNT1:
nkeynes@736
   302
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   303
        if( TMU_IS_RUNNING(1) ) { // reschedule
nkeynes@736
   304
            TMU_timers[1].timer_run = sh4r.slice_cycle;
nkeynes@736
   305
            TMU_schedule_timer( 1 );
nkeynes@736
   306
        }
nkeynes@736
   307
        return;
nkeynes@619
   308
    case TCNT2:
nkeynes@736
   309
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   310
        if( TMU_IS_RUNNING(2) ) { // reschedule
nkeynes@736
   311
            TMU_timers[2].timer_run = sh4r.slice_cycle;
nkeynes@736
   312
            TMU_schedule_timer( 2 );
nkeynes@736
   313
        }
nkeynes@736
   314
        return;
nkeynes@23
   315
    }
nkeynes@23
   316
    MMIO_WRITE( TMU, reg, val );
nkeynes@23
   317
}
nkeynes@23
   318
nkeynes@619
   319
void TMU_count_all( uint32_t nanosecs )
nkeynes@23
   320
{
nkeynes@23
   321
    int tcr = MMIO_READ( TMU, TSTR );
nkeynes@23
   322
    if( tcr & 0x01 ) {
nkeynes@736
   323
        TMU_count( 0, nanosecs );
nkeynes@23
   324
    }
nkeynes@23
   325
    if( tcr & 0x02 ) {
nkeynes@736
   326
        TMU_count( 1, nanosecs );
nkeynes@23
   327
    }
nkeynes@23
   328
    if( tcr & 0x04 ) {
nkeynes@736
   329
        TMU_count( 2, nanosecs );
nkeynes@23
   330
    }
nkeynes@23
   331
}
nkeynes@53
   332
nkeynes@619
   333
void TMU_run_slice( uint32_t nanosecs )
nkeynes@619
   334
{
nkeynes@619
   335
    TMU_count_all( nanosecs );
nkeynes@619
   336
    TMU_timers[0].timer_run = 0;
nkeynes@619
   337
    TMU_timers[1].timer_run = 0;
nkeynes@619
   338
    TMU_timers[2].timer_run = 0;
nkeynes@619
   339
}
nkeynes@619
   340
nkeynes@53
   341
void TMU_update_clocks()
nkeynes@53
   342
{
nkeynes@115
   343
    TMU_set_timer_control( 0, MMIO_READ( TMU, TCR0 ) );
nkeynes@115
   344
    TMU_set_timer_control( 1, MMIO_READ( TMU, TCR1 ) );
nkeynes@115
   345
    TMU_set_timer_control( 2, MMIO_READ( TMU, TCR2 ) );
nkeynes@53
   346
}
nkeynes@53
   347
nkeynes@53
   348
void TMU_reset( )
nkeynes@53
   349
{
nkeynes@53
   350
    TMU_timers[0].timer_remainder = 0;
nkeynes@53
   351
    TMU_timers[0].timer_run = 0;
nkeynes@53
   352
    TMU_timers[1].timer_remainder = 0;
nkeynes@53
   353
    TMU_timers[1].timer_run = 0;
nkeynes@53
   354
    TMU_timers[2].timer_remainder = 0;
nkeynes@53
   355
    TMU_timers[2].timer_run = 0;
nkeynes@53
   356
    TMU_update_clocks();
nkeynes@53
   357
}
nkeynes@53
   358
nkeynes@53
   359
void TMU_save_state( FILE *f ) {
nkeynes@53
   360
    fwrite( &TMU_timers, sizeof(TMU_timers), 1, f );
nkeynes@53
   361
}
nkeynes@53
   362
nkeynes@53
   363
int TMU_load_state( FILE *f ) 
nkeynes@53
   364
{
nkeynes@53
   365
    fread( &TMU_timers, sizeof(TMU_timers), 1, f );
nkeynes@53
   366
    return 0;
nkeynes@53
   367
}
.