Search
lxdream.org :: lxdream/src/sh4/timer.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/timer.c
changeset 859:b941c703ccd6
prev736:a02d1475ccfd
next929:fd8cb0c82f5f
author nkeynes
date Sun Oct 19 11:52:37 2008 +0000 (15 years ago)
permissions -rw-r--r--
last change Re-add the word of padding in sh4r for 64-bit alignment purposes
file annotate diff log raw
nkeynes@23
     1
/**
nkeynes@561
     2
 * $Id$
nkeynes@23
     3
 * 
nkeynes@23
     4
 * SH4 Timer/Clock peripheral modules (CPG, TMU, RTC), combined together to
nkeynes@23
     5
 * keep things simple (they intertwine a bit).
nkeynes@23
     6
 *
nkeynes@23
     7
 * Copyright (c) 2005 Nathan Keynes.
nkeynes@23
     8
 *
nkeynes@23
     9
 * This program is free software; you can redistribute it and/or modify
nkeynes@23
    10
 * it under the terms of the GNU General Public License as published by
nkeynes@23
    11
 * the Free Software Foundation; either version 2 of the License, or
nkeynes@23
    12
 * (at your option) any later version.
nkeynes@23
    13
 *
nkeynes@23
    14
 * This program is distributed in the hope that it will be useful,
nkeynes@23
    15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
nkeynes@23
    16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
nkeynes@23
    17
 * GNU General Public License for more details.
nkeynes@23
    18
 */
nkeynes@23
    19
nkeynes@619
    20
#include <assert.h>
nkeynes@619
    21
#include "lxdream.h"
nkeynes@23
    22
#include "mem.h"
nkeynes@23
    23
#include "clock.h"
nkeynes@619
    24
#include "eventq.h"
nkeynes@619
    25
#include "sh4/sh4core.h"
nkeynes@619
    26
#include "sh4/sh4mmio.h"
nkeynes@619
    27
#include "sh4/intc.h"
nkeynes@23
    28
nkeynes@23
    29
/********************************* CPG *************************************/
nkeynes@859
    30
/* This is the base clock from which all other clocks are derived. 
nkeynes@859
    31
 * Note: The real clock runs at 33Mhz, which is multiplied by the PLL to
nkeynes@859
    32
 * run the instruction clock at 200Mhz. For sake of simplicity/precision,
nkeynes@859
    33
 * we instead use 200Mhz as the base rate and divide everything down instead.
nkeynes@859
    34
 **/
nkeynes@53
    35
uint32_t sh4_input_freq = SH4_BASE_RATE;
nkeynes@53
    36
nkeynes@414
    37
uint32_t sh4_cpu_multiplier = 2000; /* = 0.5 * frequency */
nkeynes@414
    38
nkeynes@53
    39
uint32_t sh4_cpu_freq = SH4_BASE_RATE;
nkeynes@859
    40
uint32_t sh4_bus_freq = SH4_BASE_RATE / 2;
nkeynes@859
    41
uint32_t sh4_peripheral_freq = SH4_BASE_RATE / 4;
nkeynes@53
    42
nkeynes@53
    43
uint32_t sh4_cpu_period = 1000 / SH4_BASE_RATE; /* in nanoseconds */
nkeynes@859
    44
uint32_t sh4_bus_period = 2* 1000 / SH4_BASE_RATE;
nkeynes@859
    45
uint32_t sh4_peripheral_period = 4 * 2000 / SH4_BASE_RATE;
nkeynes@23
    46
nkeynes@23
    47
int32_t mmio_region_CPG_read( uint32_t reg )
nkeynes@23
    48
{
nkeynes@23
    49
    return MMIO_READ( CPG, reg );
nkeynes@23
    50
}
nkeynes@23
    51
nkeynes@53
    52
/* CPU + bus dividers (note officially only the first 6 values are valid) */
nkeynes@53
    53
int ifc_divider[8] = { 1, 2, 3, 4, 5, 8, 8, 8 };
nkeynes@53
    54
/* Peripheral clock dividers (only first 5 are officially valid) */
nkeynes@53
    55
int pfc_divider[8] = { 2, 3, 4, 6, 8, 8, 8, 8 };
nkeynes@53
    56
nkeynes@23
    57
void mmio_region_CPG_write( uint32_t reg, uint32_t val )
nkeynes@23
    58
{
nkeynes@53
    59
    uint32_t div;
nkeynes@859
    60
    uint32_t primary_clock = sh4_input_freq;
nkeynes@859
    61
    
nkeynes@53
    62
    switch( reg ) {
nkeynes@53
    63
    case FRQCR: /* Frequency control */
nkeynes@859
    64
        if( (val & FRQCR_PLL1EN) == 0 )
nkeynes@859
    65
            primary_clock /= 6;
nkeynes@736
    66
        div = ifc_divider[(val >> 6) & 0x07];
nkeynes@859
    67
        sh4_cpu_freq = primary_clock / div;
nkeynes@736
    68
        sh4_cpu_period = sh4_cpu_multiplier * div / sh4_input_freq;
nkeynes@736
    69
        div = ifc_divider[(val >> 3) & 0x07];
nkeynes@859
    70
        sh4_bus_freq = primary_clock / div;
nkeynes@736
    71
        sh4_bus_period = 1000 * div / sh4_input_freq;
nkeynes@736
    72
        div = pfc_divider[val & 0x07];
nkeynes@859
    73
        sh4_peripheral_freq = primary_clock / div;
nkeynes@736
    74
        sh4_peripheral_period = 1000 * div / sh4_input_freq;
nkeynes@53
    75
nkeynes@736
    76
        /* Update everything that depends on the peripheral frequency */
nkeynes@736
    77
        SCIF_update_line_speed();
nkeynes@736
    78
        break;
nkeynes@53
    79
    case WTCSR: /* Watchdog timer */
nkeynes@736
    80
        break;
nkeynes@53
    81
    }
nkeynes@736
    82
nkeynes@23
    83
    MMIO_WRITE( CPG, reg, val );
nkeynes@23
    84
}
nkeynes@23
    85
nkeynes@260
    86
/**
nkeynes@260
    87
 * We don't really know what the default reset value is as it's determined
nkeynes@260
    88
 * by the mode select pins. This is the standard value that the BIOS sets,
nkeynes@260
    89
 * however, so it works for now.
nkeynes@260
    90
 */
nkeynes@260
    91
void CPG_reset( )
nkeynes@260
    92
{
nkeynes@260
    93
    mmio_region_CPG_write( FRQCR, 0x0E0A );
nkeynes@260
    94
}
nkeynes@260
    95
nkeynes@260
    96
nkeynes@23
    97
/********************************** RTC *************************************/
nkeynes@23
    98
nkeynes@53
    99
uint32_t rtc_output_period;
nkeynes@53
   100
nkeynes@23
   101
int32_t mmio_region_RTC_read( uint32_t reg )
nkeynes@23
   102
{
nkeynes@23
   103
    return MMIO_READ( RTC, reg );
nkeynes@23
   104
}
nkeynes@23
   105
nkeynes@23
   106
void mmio_region_RTC_write( uint32_t reg, uint32_t val )
nkeynes@23
   107
{
nkeynes@23
   108
    MMIO_WRITE( RTC, reg, val );
nkeynes@23
   109
}
nkeynes@23
   110
nkeynes@23
   111
/********************************** TMU *************************************/
nkeynes@23
   112
nkeynes@619
   113
#define TMU_IS_RUNNING(timer)  (MMIO_READ(TMU,TSTR) & (1<<timer))
nkeynes@619
   114
nkeynes@260
   115
uint32_t TMU_count( int timer, uint32_t nanosecs );
nkeynes@260
   116
nkeynes@619
   117
void TMU_event_callback( int eventid )
nkeynes@619
   118
{
nkeynes@619
   119
    TMU_count( eventid - EVENT_TMU0, sh4r.slice_cycle );
nkeynes@619
   120
}
nkeynes@619
   121
nkeynes@619
   122
void TMU_init(void)
nkeynes@619
   123
{
nkeynes@619
   124
    register_event_callback( EVENT_TMU0, TMU_event_callback );
nkeynes@619
   125
    register_event_callback( EVENT_TMU1, TMU_event_callback );
nkeynes@619
   126
    register_event_callback( EVENT_TMU2, TMU_event_callback );
nkeynes@619
   127
}    
nkeynes@260
   128
nkeynes@53
   129
#define TCR_ICPF 0x0200
nkeynes@53
   130
#define TCR_UNF  0x0100
nkeynes@53
   131
#define TCR_UNIE 0x0020
nkeynes@53
   132
nkeynes@115
   133
#define TCR_IRQ_ACTIVE (TCR_UNF|TCR_UNIE)
nkeynes@115
   134
nkeynes@53
   135
struct TMU_timer {
nkeynes@53
   136
    uint32_t timer_period;
nkeynes@53
   137
    uint32_t timer_remainder; /* left-over cycles from last count */
nkeynes@53
   138
    uint32_t timer_run; /* cycles already run from this slice */
nkeynes@53
   139
};
nkeynes@53
   140
nkeynes@619
   141
static struct TMU_timer TMU_timers[3];
nkeynes@23
   142
nkeynes@23
   143
int32_t mmio_region_TMU_read( uint32_t reg )
nkeynes@23
   144
{
nkeynes@260
   145
    switch( reg ) {
nkeynes@260
   146
    case TCNT0:
nkeynes@736
   147
        TMU_count( 0, sh4r.slice_cycle );
nkeynes@736
   148
        break;
nkeynes@260
   149
    case TCNT1:
nkeynes@736
   150
        TMU_count( 1, sh4r.slice_cycle );
nkeynes@736
   151
        break;
nkeynes@260
   152
    case TCNT2:
nkeynes@736
   153
        TMU_count( 2, sh4r.slice_cycle );
nkeynes@736
   154
        break;
nkeynes@260
   155
    }
nkeynes@23
   156
    return MMIO_READ( TMU, reg );
nkeynes@23
   157
}
nkeynes@23
   158
nkeynes@115
   159
void TMU_set_timer_control( int timer,  int tcr )
nkeynes@53
   160
{
nkeynes@53
   161
    uint32_t period = 1;
nkeynes@115
   162
    uint32_t oldtcr = MMIO_READ( TMU, TCR0 + (12*timer) );
nkeynes@115
   163
nkeynes@115
   164
    if( (oldtcr & TCR_UNF) == 0 ) {
nkeynes@736
   165
        tcr = tcr & (~TCR_UNF);
nkeynes@115
   166
    } else {
nkeynes@736
   167
        if( ((oldtcr & TCR_UNIE) == 0) && 
nkeynes@736
   168
                (tcr & TCR_IRQ_ACTIVE) == TCR_IRQ_ACTIVE ) {
nkeynes@736
   169
            intc_raise_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   170
        } else if( (oldtcr & TCR_UNIE) != 0 && 
nkeynes@736
   171
                (tcr & TCR_IRQ_ACTIVE) != TCR_IRQ_ACTIVE ) {
nkeynes@736
   172
            intc_clear_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   173
        }
nkeynes@115
   174
    }
nkeynes@115
   175
nkeynes@53
   176
    switch( tcr & 0x07 ) {
nkeynes@53
   177
    case 0:
nkeynes@736
   178
        period = sh4_peripheral_period << 2 ;
nkeynes@736
   179
        break;
nkeynes@53
   180
    case 1: 
nkeynes@736
   181
        period = sh4_peripheral_period << 4;
nkeynes@736
   182
        break;
nkeynes@53
   183
    case 2:
nkeynes@736
   184
        period = sh4_peripheral_period << 6;
nkeynes@736
   185
        break;
nkeynes@53
   186
    case 3: 
nkeynes@736
   187
        period = sh4_peripheral_period << 8;
nkeynes@736
   188
        break;
nkeynes@53
   189
    case 4:
nkeynes@736
   190
        period = sh4_peripheral_period << 10;
nkeynes@736
   191
        break;
nkeynes@53
   192
    case 5:
nkeynes@736
   193
        /* Illegal value. */
nkeynes@736
   194
        ERROR( "TMU %d period set to illegal value (5)", timer );
nkeynes@736
   195
        period = sh4_peripheral_period << 12; /* for something to do */
nkeynes@736
   196
        break;
nkeynes@53
   197
    case 6:
nkeynes@736
   198
        period = rtc_output_period;
nkeynes@736
   199
        break;
nkeynes@53
   200
    case 7:
nkeynes@736
   201
        /* External clock... Hrm? */
nkeynes@736
   202
        period = sh4_peripheral_period; /* I dunno... */
nkeynes@736
   203
        break;
nkeynes@53
   204
    }
nkeynes@53
   205
    TMU_timers[timer].timer_period = period;
nkeynes@115
   206
nkeynes@115
   207
    MMIO_WRITE( TMU, TCR0 + (12*timer), tcr );
nkeynes@53
   208
}
nkeynes@23
   209
nkeynes@619
   210
void TMU_schedule_timer( int timer )
nkeynes@619
   211
{
nkeynes@619
   212
    uint64_t duration = (uint64_t)((uint32_t)(MMIO_READ( TMU, TCNT0 + 12*timer )+1)) * 
nkeynes@736
   213
    (uint64_t)TMU_timers[timer].timer_period - TMU_timers[timer].timer_remainder;
nkeynes@619
   214
    event_schedule_long( EVENT_TMU0+timer, (uint32_t)(duration / 1000000000), 
nkeynes@736
   215
                         (uint32_t)(duration % 1000000000) );
nkeynes@619
   216
}
nkeynes@619
   217
nkeynes@53
   218
void TMU_start( int timer )
nkeynes@23
   219
{
nkeynes@260
   220
    TMU_timers[timer].timer_run = sh4r.slice_cycle;
nkeynes@53
   221
    TMU_timers[timer].timer_remainder = 0;
nkeynes@619
   222
    TMU_schedule_timer( timer );
nkeynes@53
   223
}
nkeynes@53
   224
nkeynes@264
   225
/**
nkeynes@264
   226
 * Stop the given timer. Run it up to the current time and leave it there.
nkeynes@264
   227
 */
nkeynes@53
   228
void TMU_stop( int timer )
nkeynes@53
   229
{
nkeynes@264
   230
    TMU_count( timer, sh4r.slice_cycle );
nkeynes@619
   231
    event_cancel( EVENT_TMU0+timer );
nkeynes@53
   232
}
nkeynes@53
   233
nkeynes@53
   234
/**
nkeynes@53
   235
 * Count the specified timer for a given number of nanoseconds.
nkeynes@53
   236
 */
nkeynes@53
   237
uint32_t TMU_count( int timer, uint32_t nanosecs ) 
nkeynes@53
   238
{
nkeynes@619
   239
    uint32_t run_ns = nanosecs + TMU_timers[timer].timer_remainder -
nkeynes@736
   240
    TMU_timers[timer].timer_run;
nkeynes@53
   241
    TMU_timers[timer].timer_remainder = 
nkeynes@736
   242
        run_ns % TMU_timers[timer].timer_period;
nkeynes@619
   243
    TMU_timers[timer].timer_run = nanosecs;
nkeynes@619
   244
    uint32_t count = run_ns / TMU_timers[timer].timer_period;
nkeynes@53
   245
    uint32_t value = MMIO_READ( TMU, TCNT0 + 12*timer );
nkeynes@53
   246
    uint32_t reset = MMIO_READ( TMU, TCOR0 + 12*timer );
nkeynes@53
   247
    if( count > value ) {
nkeynes@736
   248
        uint32_t tcr = MMIO_READ( TMU, TCR0 + 12*timer );
nkeynes@736
   249
        tcr |= TCR_UNF;
nkeynes@736
   250
        count -= value;
nkeynes@619
   251
        value = reset - (count % reset) + 1;
nkeynes@736
   252
        MMIO_WRITE( TMU, TCR0 + 12*timer, tcr );
nkeynes@736
   253
        if( tcr & TCR_UNIE ) 
nkeynes@736
   254
            intc_raise_interrupt( INT_TMU_TUNI0 + timer );
nkeynes@736
   255
        MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
nkeynes@736
   256
        TMU_schedule_timer(timer);
nkeynes@53
   257
    } else {
nkeynes@736
   258
        value -= count;
nkeynes@736
   259
        MMIO_WRITE( TMU, TCNT0 + 12*timer, value );
nkeynes@23
   260
    }
nkeynes@53
   261
    return value;
nkeynes@23
   262
}
nkeynes@23
   263
nkeynes@23
   264
void mmio_region_TMU_write( uint32_t reg, uint32_t val )
nkeynes@23
   265
{
nkeynes@53
   266
    uint32_t oldval;
nkeynes@53
   267
    int i;
nkeynes@23
   268
    switch( reg ) {
nkeynes@53
   269
    case TSTR:
nkeynes@736
   270
        oldval = MMIO_READ( TMU, TSTR );
nkeynes@736
   271
        for( i=0; i<3; i++ ) {
nkeynes@736
   272
            uint32_t tmp = 1<<i;
nkeynes@736
   273
            if( (oldval & tmp) != 0 && (val&tmp) == 0  )
nkeynes@736
   274
                TMU_stop(i);
nkeynes@736
   275
            else if( (oldval&tmp) == 0 && (val&tmp) != 0 )
nkeynes@736
   276
                TMU_start(i);
nkeynes@736
   277
        }
nkeynes@736
   278
        break;
nkeynes@53
   279
    case TCR0:
nkeynes@736
   280
        TMU_set_timer_control( 0, val );
nkeynes@736
   281
        return;
nkeynes@53
   282
    case TCR1:
nkeynes@736
   283
        TMU_set_timer_control( 1, val );
nkeynes@736
   284
        return;
nkeynes@53
   285
    case TCR2:
nkeynes@736
   286
        TMU_set_timer_control( 2, val );
nkeynes@736
   287
        return;
nkeynes@619
   288
    case TCNT0:
nkeynes@736
   289
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   290
        if( TMU_IS_RUNNING(0) ) { // reschedule
nkeynes@736
   291
            TMU_timers[0].timer_run = sh4r.slice_cycle;
nkeynes@736
   292
            TMU_schedule_timer( 0 );
nkeynes@736
   293
        }
nkeynes@736
   294
        return;
nkeynes@619
   295
    case TCNT1:
nkeynes@736
   296
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   297
        if( TMU_IS_RUNNING(1) ) { // reschedule
nkeynes@736
   298
            TMU_timers[1].timer_run = sh4r.slice_cycle;
nkeynes@736
   299
            TMU_schedule_timer( 1 );
nkeynes@736
   300
        }
nkeynes@736
   301
        return;
nkeynes@619
   302
    case TCNT2:
nkeynes@736
   303
        MMIO_WRITE( TMU, reg, val );
nkeynes@736
   304
        if( TMU_IS_RUNNING(2) ) { // reschedule
nkeynes@736
   305
            TMU_timers[2].timer_run = sh4r.slice_cycle;
nkeynes@736
   306
            TMU_schedule_timer( 2 );
nkeynes@736
   307
        }
nkeynes@736
   308
        return;
nkeynes@23
   309
    }
nkeynes@23
   310
    MMIO_WRITE( TMU, reg, val );
nkeynes@23
   311
}
nkeynes@23
   312
nkeynes@619
   313
void TMU_count_all( uint32_t nanosecs )
nkeynes@23
   314
{
nkeynes@23
   315
    int tcr = MMIO_READ( TMU, TSTR );
nkeynes@23
   316
    if( tcr & 0x01 ) {
nkeynes@736
   317
        TMU_count( 0, nanosecs );
nkeynes@23
   318
    }
nkeynes@23
   319
    if( tcr & 0x02 ) {
nkeynes@736
   320
        TMU_count( 1, nanosecs );
nkeynes@23
   321
    }
nkeynes@23
   322
    if( tcr & 0x04 ) {
nkeynes@736
   323
        TMU_count( 2, nanosecs );
nkeynes@23
   324
    }
nkeynes@23
   325
}
nkeynes@53
   326
nkeynes@619
   327
void TMU_run_slice( uint32_t nanosecs )
nkeynes@619
   328
{
nkeynes@619
   329
    TMU_count_all( nanosecs );
nkeynes@619
   330
    TMU_timers[0].timer_run = 0;
nkeynes@619
   331
    TMU_timers[1].timer_run = 0;
nkeynes@619
   332
    TMU_timers[2].timer_run = 0;
nkeynes@619
   333
}
nkeynes@619
   334
nkeynes@53
   335
void TMU_update_clocks()
nkeynes@53
   336
{
nkeynes@115
   337
    TMU_set_timer_control( 0, MMIO_READ( TMU, TCR0 ) );
nkeynes@115
   338
    TMU_set_timer_control( 1, MMIO_READ( TMU, TCR1 ) );
nkeynes@115
   339
    TMU_set_timer_control( 2, MMIO_READ( TMU, TCR2 ) );
nkeynes@53
   340
}
nkeynes@53
   341
nkeynes@53
   342
void TMU_reset( )
nkeynes@53
   343
{
nkeynes@53
   344
    TMU_timers[0].timer_remainder = 0;
nkeynes@53
   345
    TMU_timers[0].timer_run = 0;
nkeynes@53
   346
    TMU_timers[1].timer_remainder = 0;
nkeynes@53
   347
    TMU_timers[1].timer_run = 0;
nkeynes@53
   348
    TMU_timers[2].timer_remainder = 0;
nkeynes@53
   349
    TMU_timers[2].timer_run = 0;
nkeynes@53
   350
    TMU_update_clocks();
nkeynes@53
   351
}
nkeynes@53
   352
nkeynes@53
   353
void TMU_save_state( FILE *f ) {
nkeynes@53
   354
    fwrite( &TMU_timers, sizeof(TMU_timers), 1, f );
nkeynes@53
   355
}
nkeynes@53
   356
nkeynes@53
   357
int TMU_load_state( FILE *f ) 
nkeynes@53
   358
{
nkeynes@53
   359
    fread( &TMU_timers, sizeof(TMU_timers), 1, f );
nkeynes@53
   360
    return 0;
nkeynes@53
   361
}
.