Search
lxdream.org :: lxdream/src/sh4/sh4.c
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4.c
changeset 1112:4cac5e474d4c
prev1091:186558374345
next1125:9dd5dee45db9
author nkeynes
date Fri Sep 10 08:50:55 2010 +1000 (13 years ago)
permissions -rw-r--r--
last change Add missing sh4_translate_breakpoint_hit to the symbol table
Change asm() to __asm__() as it's more likely to work
view annotate diff log raw
     1 /**
     2  * $Id$
     3  * 
     4  * SH4 parent module for all CPU modes and SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include <setjmp.h>
    23 #include <assert.h>
    24 #include "lxdream.h"
    25 #include "dreamcast.h"
    26 #include "cpu.h"
    27 #include "mem.h"
    28 #include "clock.h"
    29 #include "eventq.h"
    30 #include "syscall.h"
    31 #include "sh4/intc.h"
    32 #include "sh4/mmu.h"
    33 #include "sh4/sh4core.h"
    34 #include "sh4/sh4dasm.h"
    35 #include "sh4/sh4mmio.h"
    36 #include "sh4/sh4stat.h"
    37 #include "sh4/sh4trans.h"
    38 #include "xlat/xltcache.h"
    40 #ifndef M_PI
    41 #define M_PI        3.14159265358979323846264338327950288
    42 #endif
    44 void sh4_init( void );
    45 void sh4_poweron_reset( void );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length );
    51 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length );
    52 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length );
    53 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length );
    55 uint32_t sh4_run_slice( uint32_t );
    57 /* Note: this must match GDB's ordering */
    58 const struct reg_desc_struct sh4_reg_map[] = 
    59   { {"R0", REG_TYPE_INT, &sh4r.r[0]}, {"R1", REG_TYPE_INT, &sh4r.r[1]},
    60     {"R2", REG_TYPE_INT, &sh4r.r[2]}, {"R3", REG_TYPE_INT, &sh4r.r[3]},
    61     {"R4", REG_TYPE_INT, &sh4r.r[4]}, {"R5", REG_TYPE_INT, &sh4r.r[5]},
    62     {"R6", REG_TYPE_INT, &sh4r.r[6]}, {"R7", REG_TYPE_INT, &sh4r.r[7]},
    63     {"R8", REG_TYPE_INT, &sh4r.r[8]}, {"R9", REG_TYPE_INT, &sh4r.r[9]},
    64     {"R10",REG_TYPE_INT, &sh4r.r[10]}, {"R11",REG_TYPE_INT, &sh4r.r[11]},
    65     {"R12",REG_TYPE_INT, &sh4r.r[12]}, {"R13",REG_TYPE_INT, &sh4r.r[13]},
    66     {"R14",REG_TYPE_INT, &sh4r.r[14]}, {"R15",REG_TYPE_INT, &sh4r.r[15]},
    67     {"PC", REG_TYPE_INT, &sh4r.pc}, {"PR", REG_TYPE_INT, &sh4r.pr},
    68     {"GBR", REG_TYPE_INT, &sh4r.gbr}, {"VBR",REG_TYPE_INT, &sh4r.vbr}, 
    69     {"MACH",REG_TYPE_INT, ((uint32_t *)&sh4r.mac)+1}, {"MACL",REG_TYPE_INT, &sh4r.mac},
    70     {"SR", REG_TYPE_INT, &sh4r.sr},
    71     {"FPUL", REG_TYPE_INT, &sh4r.fpul.i}, {"FPSCR", REG_TYPE_INT, &sh4r.fpscr},
    73     {"FR0", REG_TYPE_FLOAT, &sh4r.fr[0][1] },{"FR1", REG_TYPE_FLOAT, &sh4r.fr[0][0]},
    74     {"FR2", REG_TYPE_FLOAT, &sh4r.fr[0][3] },{"FR3", REG_TYPE_FLOAT, &sh4r.fr[0][2]},
    75     {"FR4", REG_TYPE_FLOAT, &sh4r.fr[0][5] },{"FR5", REG_TYPE_FLOAT, &sh4r.fr[0][4]},
    76     {"FR6", REG_TYPE_FLOAT, &sh4r.fr[0][7] },{"FR7", REG_TYPE_FLOAT, &sh4r.fr[0][6]},
    77     {"FR8", REG_TYPE_FLOAT, &sh4r.fr[0][9] },{"FR9", REG_TYPE_FLOAT, &sh4r.fr[0][8]},
    78     {"FR10", REG_TYPE_FLOAT, &sh4r.fr[0][11] },{"FR11", REG_TYPE_FLOAT, &sh4r.fr[0][10]},
    79     {"FR12", REG_TYPE_FLOAT, &sh4r.fr[0][13] },{"FR13", REG_TYPE_FLOAT, &sh4r.fr[0][12]},
    80     {"FR14", REG_TYPE_FLOAT, &sh4r.fr[0][15] },{"FR15", REG_TYPE_FLOAT, &sh4r.fr[0][14]},
    82     {"SSR",REG_TYPE_INT, &sh4r.ssr}, {"SPC", REG_TYPE_INT, &sh4r.spc},
    84     {"R0B0", REG_TYPE_INT, NULL}, {"R1B0", REG_TYPE_INT, NULL},
    85     {"R2B0", REG_TYPE_INT, NULL}, {"R3B0", REG_TYPE_INT, NULL},
    86     {"R4B0", REG_TYPE_INT, NULL}, {"R5B0", REG_TYPE_INT, NULL},
    87     {"R6B0", REG_TYPE_INT, NULL}, {"R7B0", REG_TYPE_INT, NULL},
    88     {"R0B1", REG_TYPE_INT, NULL}, {"R1B1", REG_TYPE_INT, NULL},
    89     {"R2B1", REG_TYPE_INT, NULL}, {"R3B1", REG_TYPE_INT, NULL},
    90     {"R4B1", REG_TYPE_INT, NULL}, {"R5B1", REG_TYPE_INT, NULL},
    91     {"R6B1", REG_TYPE_INT, NULL}, {"R7B1", REG_TYPE_INT, NULL},
    93     {"SGR",REG_TYPE_INT, &sh4r.sgr}, {"DBR", REG_TYPE_INT, &sh4r.dbr},
    95     {"XF0", REG_TYPE_FLOAT, &sh4r.fr[1][1] },{"XF1", REG_TYPE_FLOAT, &sh4r.fr[1][0]},
    96     {"XF2", REG_TYPE_FLOAT, &sh4r.fr[1][3] },{"XF3", REG_TYPE_FLOAT, &sh4r.fr[1][2]},
    97     {"XF4", REG_TYPE_FLOAT, &sh4r.fr[1][5] },{"XF5", REG_TYPE_FLOAT, &sh4r.fr[1][4]},
    98     {"XF6", REG_TYPE_FLOAT, &sh4r.fr[1][7] },{"XF7", REG_TYPE_FLOAT, &sh4r.fr[1][6]},
    99     {"XF8", REG_TYPE_FLOAT, &sh4r.fr[1][9] },{"XF9", REG_TYPE_FLOAT, &sh4r.fr[1][8]},
   100     {"XF10", REG_TYPE_FLOAT, &sh4r.fr[1][11] },{"XF11", REG_TYPE_FLOAT, &sh4r.fr[1][10]},
   101     {"XF12", REG_TYPE_FLOAT, &sh4r.fr[1][13] },{"XF13", REG_TYPE_FLOAT, &sh4r.fr[1][12]},
   102     {"XF14", REG_TYPE_FLOAT, &sh4r.fr[1][15] },{"XF15", REG_TYPE_FLOAT, &sh4r.fr[1][14]},
   104     {NULL, 0, NULL} };
   106 void *sh4_get_register( int reg )
   107 {
   108     if( reg < 0 || reg >= 94 ) {
   109         return NULL;
   110     } else if( reg < 43 ) {
   111         return sh4_reg_map[reg].value;
   112     } else if( reg < 51 ) {
   113         /* r0b0..r7b0 */
   114         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   115             /* bank 1 is primary */
   116             return &sh4r.r_bank[reg-43];
   117         } else {
   118             return &sh4r.r[reg-43];
   119         }
   120     } else if( reg < 59 ) {
   121         /* r0b1..r7b1 */
   122         if( (sh4r.sr & SR_MDRB) == SR_MDRB ) {
   123             /* bank 1 is primary */
   124             return &sh4r.r[reg-43];
   125         } else {
   126             return &sh4r.r_bank[reg-43];
   127         }
   128     } else {
   129         return NULL; /* not supported at the moment */
   130     }
   131 }
   134 const struct cpu_desc_struct sh4_cpu_desc = 
   135     { "SH4", sh4_disasm_instruction, sh4_get_register, sh4_has_page,
   136             sh4_debug_read_phys, sh4_debug_write_phys, sh4_debug_read_vma, sh4_debug_write_vma,
   137             sh4_execute_instruction, 
   138       sh4_set_breakpoint, sh4_clear_breakpoint, sh4_get_breakpoint, 2,
   139       (char *)&sh4r, sizeof(sh4r), sh4_reg_map, 23, 59,
   140       &sh4r.pc };
   142 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_poweron_reset, 
   143         sh4_start, sh4_run_slice, sh4_stop,
   144         sh4_save_state, sh4_load_state };
   146 struct sh4_registers sh4r __attribute__((aligned(16)));
   147 struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
   148 int sh4_breakpoint_count = 0;
   150 gboolean sh4_starting = FALSE;
   151 static gboolean sh4_use_translator = FALSE;
   152 static jmp_buf sh4_exit_jmp_buf;
   153 static gboolean sh4_running = FALSE;
   154 struct sh4_icache_struct sh4_icache = { NULL, -1, -1, 0 };
   156 /* At the moment this is a dummy event to mark the end of the
   157  * timeslice
   158  */
   159 void sh4_dummy_event(int eventid)
   160 {
   161 }
   163 void sh4_translate_set_enabled( gboolean use )
   164 {
   165     // No-op if the translator was not built
   166 #ifdef SH4_TRANSLATOR
   167     if( use ) {
   168         sh4_translate_init();
   169     }
   170     sh4_use_translator = use;
   171 #endif
   172 }
   174 gboolean sh4_translate_is_enabled()
   175 {
   176     return sh4_use_translator;
   177 }
   179 void sh4_init(void)
   180 {
   181     register_io_regions( mmio_list_sh4mmio );
   182     register_event_callback( EVENT_ENDTIMESLICE, sh4_dummy_event );
   183     MMU_init();
   184     TMU_init();
   185     xlat_cache_init();
   186     sh4_poweron_reset();
   187 #ifdef ENABLE_SH4STATS
   188     sh4_stats_reset();
   189 #endif
   190 }
   192 void sh4_start(void)
   193 {
   194     sh4_starting = TRUE;
   195 }
   197 void sh4_poweron_reset(void)
   198 {
   199     /* zero everything out, for the sake of having a consistent state. */
   200     memset( &sh4r, 0, sizeof(sh4r) );
   201     if(	sh4_use_translator ) {
   202         xlat_flush_cache();
   203     }
   205     /* Resume running if we were halted */
   206     sh4r.sh4_state = SH4_STATE_RUNNING;
   208     sh4r.pc    = 0xA0000000;
   209     sh4r.new_pc= 0xA0000002;
   210     sh4r.vbr   = 0x00000000;
   211     sh4r.fpscr = 0x00040001;
   212     sh4_write_sr(0x700000F0);
   214     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
   215     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
   217     /* Peripheral modules */
   218     CPG_reset();
   219     INTC_reset();
   220     PMM_reset();
   221     TMU_reset();
   222     SCIF_reset();
   223     CCN_reset();
   224     MMU_reset();
   225 }
   227 void sh4_stop(void)
   228 {
   229     if(	sh4_use_translator ) {
   230         /* If we were running with the translator, update new_pc and in_delay_slot */
   231         sh4r.new_pc = sh4r.pc+2;
   232         sh4r.in_delay_slot = FALSE;
   233     }
   235 }
   237 /**
   238  * Execute a timeslice using translated code only (ie translate/execute loop)
   239  */
   240 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   241 {
   242     sh4r.slice_cycle = 0;
   244     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   245         sh4_sleep_run_slice(nanosecs);
   246     }
   248     /* Setup for sudden vm exits */
   249     switch( setjmp(sh4_exit_jmp_buf) ) {
   250     case CORE_EXIT_BREAKPOINT:
   251         sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   252         /* fallthrough */
   253     case CORE_EXIT_HALT:
   254         if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   255             TMU_run_slice( sh4r.slice_cycle );
   256             SCIF_run_slice( sh4r.slice_cycle );
   257             PMM_run_slice( sh4r.slice_cycle );
   258             dreamcast_stop();
   259             return sh4r.slice_cycle;
   260         }
   261     case CORE_EXIT_SYSRESET:
   262         dreamcast_reset();
   263         break;
   264     case CORE_EXIT_SLEEP:
   265         sh4_sleep_run_slice(nanosecs);
   266         break;  
   267     case CORE_EXIT_FLUSH_ICACHE:
   268         xlat_flush_cache();
   269         break;
   270     }
   272     sh4_running = TRUE;
   274     /* Execute the core's real slice */
   275 #ifdef SH4_TRANSLATOR
   276     if( sh4_use_translator ) {
   277         sh4_translate_run_slice(nanosecs);
   278     } else {
   279         sh4_emulate_run_slice(nanosecs);
   280     }
   281 #else
   282     sh4_emulate_run_slice(nanosecs);
   283 #endif
   285     /* And finish off the peripherals afterwards */
   287     sh4_running = FALSE;
   288     sh4_starting = FALSE;
   289     sh4r.slice_cycle = nanosecs;
   290     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   291         TMU_run_slice( nanosecs );
   292         SCIF_run_slice( nanosecs );
   293         PMM_run_slice( sh4r.slice_cycle );
   294     }
   295     return nanosecs;   
   296 }
   298 void sh4_core_exit( int exit_code )
   299 {
   300     if( sh4_running ) {
   301 #ifdef SH4_TRANSLATOR
   302         if( sh4_use_translator ) {
   303             if( exit_code == CORE_EXIT_EXCEPTION ) {
   304                 sh4_translate_exception_exit_recover();
   305             } else {
   306                 sh4_translate_exit_recover();
   307             }
   308         }
   309 #endif
   310         if( exit_code != CORE_EXIT_EXCEPTION &&
   311             exit_code != CORE_EXIT_BREAKPOINT ) {
   312             sh4_finalize_instruction();
   313         }
   314         // longjmp back into sh4_run_slice
   315         sh4_running = FALSE;
   316         longjmp(sh4_exit_jmp_buf, exit_code);
   317     }
   318 }
   320 void sh4_save_state( FILE *f )
   321 {
   322     if(	sh4_use_translator ) {
   323         /* If we were running with the translator, update new_pc and in_delay_slot */
   324         sh4r.new_pc = sh4r.pc+2;
   325         sh4r.in_delay_slot = FALSE;
   326     }
   328     fwrite( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   329     MMU_save_state( f );
   330     CCN_save_state( f );
   331     PMM_save_state( f );
   332     INTC_save_state( f );
   333     TMU_save_state( f );
   334     SCIF_save_state( f );
   335 }
   337 int sh4_load_state( FILE * f )
   338 {
   339     if(	sh4_use_translator ) {
   340         xlat_flush_cache();
   341     }
   342     fread( &sh4r, offsetof(struct sh4_registers, xlat_sh4_mode), 1, f );
   343     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   344     MMU_load_state( f );
   345     CCN_load_state( f );
   346     PMM_load_state( f );
   347     INTC_load_state( f );
   348     TMU_load_state( f );
   349     return SCIF_load_state( f );
   350 }
   352 void sh4_set_breakpoint( uint32_t pc, breakpoint_type_t type )
   353 {
   354     sh4_breakpoints[sh4_breakpoint_count].address = pc;
   355     sh4_breakpoints[sh4_breakpoint_count].type = type;
   356     if( sh4_use_translator ) {
   357         xlat_invalidate_word( pc );
   358     }
   359     sh4_breakpoint_count++;
   360 }
   362 gboolean sh4_clear_breakpoint( uint32_t pc, breakpoint_type_t type )
   363 {
   364     int i;
   366     for( i=0; i<sh4_breakpoint_count; i++ ) {
   367         if( sh4_breakpoints[i].address == pc && 
   368                 sh4_breakpoints[i].type == type ) {
   369             while( ++i < sh4_breakpoint_count ) {
   370                 sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   371                 sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   372             }
   373             if( sh4_use_translator ) {
   374                 xlat_invalidate_word( pc );
   375             }
   376             sh4_breakpoint_count--;
   377             return TRUE;
   378         }
   379     }
   380     return FALSE;
   381 }
   383 int sh4_get_breakpoint( uint32_t pc )
   384 {
   385     int i;
   386     for( i=0; i<sh4_breakpoint_count; i++ ) {
   387         if( sh4_breakpoints[i].address == pc )
   388             return sh4_breakpoints[i].type;
   389     }
   390     return 0;
   391 }
   393 void sh4_set_pc( int pc )
   394 {
   395     sh4r.pc = pc;
   396     sh4r.new_pc = pc+2;
   397 }
   399 /**
   400  * Dump all SH4 core information for crash-dump purposes
   401  */
   402 void sh4_crashdump()
   403 {
   404     cpu_print_registers( stderr, &sh4_cpu_desc );
   405 #ifdef SH4_TRANSLATOR
   406     if( sh4_use_translator ) {
   407         sh4_translate_crashdump();
   408     } /* Nothing really to print for emu core */
   409 #endif
   410 }
   413 /******************************* Support methods ***************************/
   415 static void sh4_switch_banks( )
   416 {
   417     uint32_t tmp[8];
   419     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   420     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   421     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   422 }
   424 void FASTCALL sh4_switch_fr_banks()
   425 {
   426     int i;
   427     for( i=0; i<16; i++ ) {
   428         float tmp = sh4r.fr[0][i];
   429         sh4r.fr[0][i] = sh4r.fr[1][i];
   430         sh4r.fr[1][i] = tmp;
   431     }
   432 }
   434 void FASTCALL sh4_write_sr( uint32_t newval )
   435 {
   436     int oldbank = (sh4r.sr&SR_MDRB) == SR_MDRB;
   437     int newbank = (newval&SR_MDRB) == SR_MDRB;
   438     if( oldbank != newbank )
   439         sh4_switch_banks();
   440     sh4r.sr = newval & SR_MASK;
   441     sh4r.t = (newval&SR_T) ? 1 : 0;
   442     sh4r.s = (newval&SR_S) ? 1 : 0;
   443     sh4r.m = (newval&SR_M) ? 1 : 0;
   444     sh4r.q = (newval&SR_Q) ? 1 : 0;
   445     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   446     intc_mask_changed();
   447 }
   449 void FASTCALL sh4_write_fpscr( uint32_t newval )
   450 {
   451     if( (sh4r.fpscr ^ newval) & FPSCR_FR ) {
   452         sh4_switch_fr_banks();
   453     }
   454     sh4r.fpscr = newval & FPSCR_MASK;
   455     sh4r.xlat_sh4_mode = (sh4r.sr & SR_MD) | (sh4r.fpscr & (FPSCR_SZ|FPSCR_PR));
   456 }
   458 uint32_t FASTCALL sh4_read_sr( void )
   459 {
   460     /* synchronize sh4r.sr with the various bitflags */
   461     sh4r.sr &= SR_MQSTMASK;
   462     if( sh4r.t ) sh4r.sr |= SR_T;
   463     if( sh4r.s ) sh4r.sr |= SR_S;
   464     if( sh4r.m ) sh4r.sr |= SR_M;
   465     if( sh4r.q ) sh4r.sr |= SR_Q;
   466     return sh4r.sr;
   467 }
   469 /**
   470  * Raise a CPU reset exception with the specified exception code.
   471  */
   472 void FASTCALL sh4_raise_reset( int code )
   473 {
   474     MMIO_WRITE(MMU,EXPEVT,code);
   475     sh4r.vbr = 0x00000000;
   476     sh4r.pc = 0xA0000000;
   477     sh4r.new_pc = sh4r.pc + 2;
   478     sh4r.in_delay_slot = 0;
   479     sh4_write_sr( (sh4r.sr|SR_MD|SR_BL|SR_RB|SR_IMASK)&(~SR_FD) );
   481     /* Peripheral manual reset (FIXME: incomplete) */
   482     INTC_reset();
   483     SCIF_reset();
   484     MMU_reset();
   485 }
   487 void FASTCALL sh4_raise_tlb_multihit( sh4vma_t vpn )
   488 {
   489     MMIO_WRITE( MMU, TEA, vpn );
   490     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   491     sh4_raise_reset( EXC_TLB_MULTI_HIT );
   492 }
   494 /**
   495  * Raise a general CPU exception for the specified exception code.
   496  * (NOT for TRAPA or TLB exceptions)
   497  */
   498 void FASTCALL sh4_raise_exception( int code )
   499 {
   500     if( sh4r.sr & SR_BL ) {
   501         sh4_raise_reset( EXC_MANUAL_RESET );
   502     } else {
   503         sh4r.spc = sh4r.pc;
   504         sh4r.ssr = sh4_read_sr();
   505         sh4r.sgr = sh4r.r[15];
   506         MMIO_WRITE(MMU,EXPEVT, code);
   507         sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   508         sh4r.new_pc = sh4r.pc + 2;
   509         sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   510         sh4r.in_delay_slot = 0;
   511     }
   512 }
   514 void FASTCALL sh4_raise_trap( int trap )
   515 {
   516     MMIO_WRITE( MMU, TRA, trap<<2 );
   517     MMIO_WRITE( MMU, EXPEVT, EXC_TRAP );
   518     sh4r.spc = sh4r.pc;
   519     sh4r.ssr = sh4_read_sr();
   520     sh4r.sgr = sh4r.r[15];
   521     sh4r.pc = sh4r.vbr + EXV_EXCEPTION;
   522     sh4r.new_pc = sh4r.pc + 2;
   523     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   524     sh4r.in_delay_slot = 0;
   525 }
   527 void FASTCALL sh4_raise_tlb_exception( int code, sh4vma_t vpn )
   528 {
   529     MMIO_WRITE( MMU, TEA, vpn );
   530     MMIO_WRITE( MMU, PTEH, ((MMIO_READ(MMU, PTEH) & 0x000003FF) | (vpn&0xFFFFFC00)) );
   531     MMIO_WRITE( MMU, EXPEVT, code );
   532     sh4r.spc = sh4r.pc;
   533     sh4r.ssr = sh4_read_sr();
   534     sh4r.sgr = sh4r.r[15];
   535     sh4r.pc = sh4r.vbr + EXV_TLBMISS;
   536     sh4r.new_pc = sh4r.pc + 2;
   537     sh4_write_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB );
   538     sh4r.in_delay_slot = 0;
   539 }
   541 void FASTCALL sh4_accept_interrupt( void )
   542 {
   543     uint32_t code = intc_accept_interrupt();
   544     MMIO_WRITE( MMU, INTEVT, code );
   545     sh4r.ssr = sh4_read_sr();
   546     sh4r.spc = sh4r.pc;
   547     sh4r.sgr = sh4r.r[15];
   548     sh4_write_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   549     sh4r.pc = sh4r.vbr + 0x600;
   550     sh4r.new_pc = sh4r.pc + 2;
   551     sh4r.in_delay_slot = 0;
   552 }
   554 void FASTCALL signsat48( void )
   555 {
   556     if( ((int64_t)sh4r.mac) < (int64_t)0xFFFF800000000000LL )
   557         sh4r.mac = 0xFFFF800000000000LL;
   558     else if( ((int64_t)sh4r.mac) > (int64_t)0x00007FFFFFFFFFFFLL )
   559         sh4r.mac = 0x00007FFFFFFFFFFFLL;
   560 }
   562 void FASTCALL sh4_fsca( uint32_t anglei, float *fr )
   563 {
   564     float angle = (((float)(anglei&0xFFFF))/65536.0) * 2 * M_PI;
   565     *fr++ = cosf(angle);
   566     *fr = sinf(angle);
   567 }
   569 /**
   570  * Enter sleep mode (eg by executing a SLEEP instruction).
   571  * Sets sh4_state appropriately and ensures any stopping peripheral modules
   572  * are up to date.
   573  */
   574 void FASTCALL sh4_sleep(void)
   575 {
   576     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   577         sh4r.sh4_state = SH4_STATE_STANDBY;
   578         /* Bring all running peripheral modules up to date, and then halt them. */
   579         TMU_run_slice( sh4r.slice_cycle );
   580         SCIF_run_slice( sh4r.slice_cycle );
   581         PMM_run_slice( sh4r.slice_cycle );
   582     } else {
   583         if( MMIO_READ( CPG, STBCR2 ) & 0x80 ) {
   584             sh4r.sh4_state = SH4_STATE_DEEP_SLEEP;
   585             /* Halt DMAC but other peripherals still running */
   587         } else {
   588             sh4r.sh4_state = SH4_STATE_SLEEP;
   589         }
   590     }
   591     sh4_core_exit( CORE_EXIT_SLEEP );
   592 }
   594 /**
   595  * Wakeup following sleep mode (IRQ or reset). Sets state back to running,
   596  * and restarts any peripheral devices that were stopped.
   597  */
   598 void sh4_wakeup(void)
   599 {
   600     switch( sh4r.sh4_state ) {
   601     case SH4_STATE_STANDBY:
   602         break;
   603     case SH4_STATE_DEEP_SLEEP:
   604         break;
   605     case SH4_STATE_SLEEP:
   606         break;
   607     }
   608     sh4r.sh4_state = SH4_STATE_RUNNING;
   609 }
   611 /**
   612  * Run a time slice (or portion of a timeslice) while the SH4 is sleeping.
   613  * Returns when either the SH4 wakes up (interrupt received) or the end of
   614  * the slice is reached. Updates sh4.slice_cycle with the exit time and
   615  * returns the same value.
   616  */
   617 uint32_t sh4_sleep_run_slice( uint32_t nanosecs )
   618 {
   619     int sleep_state = sh4r.sh4_state;
   620     assert( sleep_state != SH4_STATE_RUNNING );
   622     while( sh4r.event_pending < nanosecs ) {
   623         sh4r.slice_cycle = sh4r.event_pending;
   624         if( sh4r.event_types & PENDING_EVENT ) {
   625             event_execute();
   626         }
   627         if( sh4r.event_types & PENDING_IRQ ) {
   628             sh4_wakeup();
   629             return sh4r.slice_cycle;
   630         }
   631     }
   632     sh4r.slice_cycle = nanosecs;
   633     return sh4r.slice_cycle;
   634 }
   637 /**
   638  * Compute the matrix tranform of fv given the matrix xf.
   639  * Both fv and xf are word-swapped as per the sh4r.fr banks
   640  */
   641 void FASTCALL sh4_ftrv( float *target )
   642 {
   643     float fv[4] = { target[1], target[0], target[3], target[2] };
   644     target[1] = sh4r.fr[1][1] * fv[0] + sh4r.fr[1][5]*fv[1] +
   645     sh4r.fr[1][9]*fv[2] + sh4r.fr[1][13]*fv[3];
   646     target[0] = sh4r.fr[1][0] * fv[0] + sh4r.fr[1][4]*fv[1] +
   647     sh4r.fr[1][8]*fv[2] + sh4r.fr[1][12]*fv[3];
   648     target[3] = sh4r.fr[1][3] * fv[0] + sh4r.fr[1][7]*fv[1] +
   649     sh4r.fr[1][11]*fv[2] + sh4r.fr[1][15]*fv[3];
   650     target[2] = sh4r.fr[1][2] * fv[0] + sh4r.fr[1][6]*fv[1] +
   651     sh4r.fr[1][10]*fv[2] + sh4r.fr[1][14]*fv[3];
   652 }
   654 gboolean sh4_has_page( sh4vma_t vma )
   655 {
   656     sh4addr_t addr = mmu_vma_to_phys_disasm(vma);
   657     return addr != MMU_VMA_ERROR && mem_has_page(addr);
   658 }
   660 /**
   661  * Go through ext_address_space page by page
   662  */
   663 size_t sh4_debug_read_phys( unsigned char *buf, uint32_t addr, size_t length )
   664 {
   665     /* Quick and very dirty */
   666     unsigned char *region = mem_get_region(addr);
   667     if( region == NULL ) {
   668         memset( buf, 0, length );
   669     } else {
   670         memcpy( buf, region, length );
   671     }
   672     return length;
   673 }
   675 size_t sh4_debug_write_phys( uint32_t addr, unsigned char *buf, size_t length )
   676 {
   677     unsigned char *region = mem_get_region(addr);
   678     if( region != NULL ) {
   679         memcpy( region, buf, length );
   680     }
   681     return length;
   682 }
   684 /**
   685  * Read virtual memory - for now just go 1K at a time 
   686  */
   687 size_t sh4_debug_read_vma( unsigned char *buf, uint32_t addr, size_t length )
   688 {
   689     if( IS_TLB_ENABLED() ) {
   690         size_t read_len = 0;
   691         while( length > 0 ) {
   692             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   693             if( phys == MMU_VMA_ERROR )
   694                 break;
   695             int next_len = 1024 - (phys&0x000003FF);
   696             if( next_len >= length ) {
   697                 next_len = length;
   698             }
   699             sh4_debug_read_phys( buf, phys, length );
   700             buf += next_len;
   701             addr += next_len;
   702             read_len += next_len; 
   703             length -= next_len;
   704         }
   705         return read_len;
   706     } else {
   707         return sh4_debug_read_phys( buf, addr, length );
   708     }
   709 }
   711 size_t sh4_debug_write_vma( uint32_t addr, unsigned char *buf, size_t length )
   712 {
   713     if( IS_TLB_ENABLED() ) {
   714         size_t read_len = 0;
   715         while( length > 0 ) {
   716             sh4addr_t phys = mmu_vma_to_phys_disasm(addr);
   717             if( phys == MMU_VMA_ERROR )
   718                 break;
   719             int next_len = 1024 - (phys&0x000003FF);
   720             if( next_len >= length ) {
   721                 next_len = length;
   722             }
   723             sh4_debug_write_phys( phys, buf, length );
   724             buf += next_len;
   725             addr += next_len;
   726             read_len += next_len; 
   727             length -= next_len;
   728         }
   729         return read_len;
   730     } else {
   731         return sh4_debug_write_phys( addr, buf, length );
   732     }
   733 }
.