Search
lxdream.org :: lxdream/src/sh4/sh4core.in
lxdream 0.9.1
released Jun 29
Download Now
filename src/sh4/sh4core.in
changeset 369:4b4223e7d720
prev367:9c52dcbad3fb
next374:8f80a795513e
author nkeynes
date Sat Sep 08 04:38:38 2007 +0000 (16 years ago)
permissions -rw-r--r--
last change Add time-limited run option (for time trials)
view annotate diff log raw
     1 /**
     2  * $Id: sh4core.in,v 1.3 2007-09-08 03:12:21 nkeynes Exp $
     3  * 
     4  * SH4 emulation core, and parent module for all the SH4 peripheral
     5  * modules.
     6  *
     7  * Copyright (c) 2005 Nathan Keynes.
     8  *
     9  * This program is free software; you can redistribute it and/or modify
    10  * it under the terms of the GNU General Public License as published by
    11  * the Free Software Foundation; either version 2 of the License, or
    12  * (at your option) any later version.
    13  *
    14  * This program is distributed in the hope that it will be useful,
    15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    17  * GNU General Public License for more details.
    18  */
    20 #define MODULE sh4_module
    21 #include <math.h>
    22 #include "dream.h"
    23 #include "sh4/sh4core.h"
    24 #include "sh4/sh4mmio.h"
    25 #include "sh4/intc.h"
    26 #include "mem.h"
    27 #include "clock.h"
    28 #include "syscall.h"
    30 #define SH4_CALLTRACE 1
    32 #define MAX_INT 0x7FFFFFFF
    33 #define MIN_INT 0x80000000
    34 #define MAX_INTF 2147483647.0
    35 #define MIN_INTF -2147483648.0
    37 #define EXV_EXCEPTION    0x100  /* General exception vector */
    38 #define EXV_TLBMISS      0x400  /* TLB-miss exception vector */
    39 #define EXV_INTERRUPT    0x600  /* External interrupt vector */
    41 /********************** SH4 Module Definition ****************************/
    43 void sh4_init( void );
    44 void sh4_reset( void );
    45 uint32_t sh4_run_slice( uint32_t );
    46 void sh4_start( void );
    47 void sh4_stop( void );
    48 void sh4_save_state( FILE *f );
    49 int sh4_load_state( FILE *f );
    50 void sh4_accept_interrupt( void );
    52 struct dreamcast_module sh4_module = { "SH4", sh4_init, sh4_reset, 
    53 				       NULL, sh4_run_slice, sh4_stop,
    54 				       sh4_save_state, sh4_load_state };
    56 struct sh4_registers sh4r;
    58 void sh4_init(void)
    59 {
    60     register_io_regions( mmio_list_sh4mmio );
    61     MMU_init();
    62     sh4_reset();
    63 }
    65 void sh4_reset(void)
    66 {
    67     /* zero everything out, for the sake of having a consistent state. */
    68     memset( &sh4r, 0, sizeof(sh4r) );
    70     /* Resume running if we were halted */
    71     sh4r.sh4_state = SH4_STATE_RUNNING;
    73     sh4r.pc    = 0xA0000000;
    74     sh4r.new_pc= 0xA0000002;
    75     sh4r.vbr   = 0x00000000;
    76     sh4r.fpscr = 0x00040001;
    77     sh4r.sr    = 0x700000F0;
    79     /* Mem reset will do this, but if we want to reset _just_ the SH4... */
    80     MMIO_WRITE( MMU, EXPEVT, EXC_POWER_RESET );
    82     /* Peripheral modules */
    83     CPG_reset();
    84     INTC_reset();
    85     MMU_reset();
    86     TMU_reset();
    87     SCIF_reset();
    88 }
    90 static struct breakpoint_struct sh4_breakpoints[MAX_BREAKPOINTS];
    91 static int sh4_breakpoint_count = 0;
    92 static uint16_t *sh4_icache = NULL;
    93 static uint32_t sh4_icache_addr = 0;
    95 void sh4_set_breakpoint( uint32_t pc, int type )
    96 {
    97     sh4_breakpoints[sh4_breakpoint_count].address = pc;
    98     sh4_breakpoints[sh4_breakpoint_count].type = type;
    99     sh4_breakpoint_count++;
   100 }
   102 gboolean sh4_clear_breakpoint( uint32_t pc, int type )
   103 {
   104     int i;
   106     for( i=0; i<sh4_breakpoint_count; i++ ) {
   107 	if( sh4_breakpoints[i].address == pc && 
   108 	    sh4_breakpoints[i].type == type ) {
   109 	    while( ++i < sh4_breakpoint_count ) {
   110 		sh4_breakpoints[i-1].address = sh4_breakpoints[i].address;
   111 		sh4_breakpoints[i-1].type = sh4_breakpoints[i].type;
   112 	    }
   113 	    sh4_breakpoint_count--;
   114 	    return TRUE;
   115 	}
   116     }
   117     return FALSE;
   118 }
   120 int sh4_get_breakpoint( uint32_t pc )
   121 {
   122     int i;
   123     for( i=0; i<sh4_breakpoint_count; i++ ) {
   124 	if( sh4_breakpoints[i].address == pc )
   125 	    return sh4_breakpoints[i].type;
   126     }
   127     return 0;
   128 }
   130 uint32_t sh4_run_slice( uint32_t nanosecs ) 
   131 {
   132     int i;
   133     sh4r.slice_cycle = 0;
   135     if( sh4r.sh4_state != SH4_STATE_RUNNING ) {
   136 	if( sh4r.event_pending < nanosecs ) {
   137 	    sh4r.sh4_state = SH4_STATE_RUNNING;
   138 	    sh4r.slice_cycle = sh4r.event_pending;
   139 	}
   140     }
   142     if( sh4_breakpoint_count == 0 ) {
   143 	for( ; sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
   144 	    if( SH4_EVENT_PENDING() ) {
   145 		if( sh4r.event_types & PENDING_EVENT ) {
   146 		    event_execute();
   147 		}
   148 		/* Eventq execute may (quite likely) deliver an immediate IRQ */
   149 		if( sh4r.event_types & PENDING_IRQ ) {
   150 		    sh4_accept_interrupt();
   151 		}
   152 	    }
   153 	    if( !sh4_execute_instruction() ) {
   154 		break;
   155 	    }
   156 	}
   157     } else {
   158 	for( ;sh4r.slice_cycle < nanosecs; sh4r.slice_cycle += sh4_cpu_period ) {
   159 	    if( SH4_EVENT_PENDING() ) {
   160 		if( sh4r.event_types & PENDING_EVENT ) {
   161 		    event_execute();
   162 		}
   163 		/* Eventq execute may (quite likely) deliver an immediate IRQ */
   164 		if( sh4r.event_types & PENDING_IRQ ) {
   165 		    sh4_accept_interrupt();
   166 		}
   167 	    }
   169 	    if( !sh4_execute_instruction() )
   170 		break;
   171 #ifdef ENABLE_DEBUG_MODE
   172 	    for( i=0; i<sh4_breakpoint_count; i++ ) {
   173 		if( sh4_breakpoints[i].address == sh4r.pc ) {
   174 		    break;
   175 		}
   176 	    }
   177 	    if( i != sh4_breakpoint_count ) {
   178 		dreamcast_stop();
   179 		if( sh4_breakpoints[i].type == BREAK_ONESHOT )
   180 		    sh4_clear_breakpoint( sh4r.pc, BREAK_ONESHOT );
   181 		break;
   182 	    }
   183 #endif	
   184 	}
   185     }
   187     /* If we aborted early, but the cpu is still technically running,
   188      * we're doing a hard abort - cut the timeslice back to what we
   189      * actually executed
   190      */
   191     if( sh4r.slice_cycle != nanosecs && sh4r.sh4_state == SH4_STATE_RUNNING ) {
   192 	nanosecs = sh4r.slice_cycle;
   193     }
   194     if( sh4r.sh4_state != SH4_STATE_STANDBY ) {
   195 	TMU_run_slice( nanosecs );
   196 	SCIF_run_slice( nanosecs );
   197     }
   198     return nanosecs;
   199 }
   201 void sh4_stop(void)
   202 {
   204 }
   206 void sh4_save_state( FILE *f )
   207 {
   208     fwrite( &sh4r, sizeof(sh4r), 1, f );
   209     MMU_save_state( f );
   210     INTC_save_state( f );
   211     TMU_save_state( f );
   212     SCIF_save_state( f );
   213 }
   215 int sh4_load_state( FILE * f )
   216 {
   217     fread( &sh4r, sizeof(sh4r), 1, f );
   218     MMU_load_state( f );
   219     INTC_load_state( f );
   220     TMU_load_state( f );
   221     return SCIF_load_state( f );
   222 }
   224 /********************** SH4 emulation core  ****************************/
   226 void sh4_set_pc( int pc )
   227 {
   228     sh4r.pc = pc;
   229     sh4r.new_pc = pc+2;
   230 }
   232 #define UNDEF(ir) return sh4_raise_slot_exception(EXC_ILLEGAL, EXC_SLOT_ILLEGAL)
   233 #define UNIMP(ir) do{ ERROR( "Halted on unimplemented instruction at %08x, opcode = %04x", sh4r.pc, ir ); dreamcast_stop(); return FALSE; }while(0)
   235 #if(SH4_CALLTRACE == 1)
   236 #define MAX_CALLSTACK 32
   237 static struct call_stack {
   238     sh4addr_t call_addr;
   239     sh4addr_t target_addr;
   240     sh4addr_t stack_pointer;
   241 } call_stack[MAX_CALLSTACK];
   243 static int call_stack_depth = 0;
   244 int sh4_call_trace_on = 0;
   246 static inline trace_call( sh4addr_t source, sh4addr_t dest ) 
   247 {
   248     if( call_stack_depth < MAX_CALLSTACK ) {
   249 	call_stack[call_stack_depth].call_addr = source;
   250 	call_stack[call_stack_depth].target_addr = dest;
   251 	call_stack[call_stack_depth].stack_pointer = sh4r.r[15];
   252     }
   253     call_stack_depth++;
   254 }
   256 static inline trace_return( sh4addr_t source, sh4addr_t dest )
   257 {
   258     if( call_stack_depth > 0 ) {
   259 	call_stack_depth--;
   260     }
   261 }
   263 void fprint_stack_trace( FILE *f )
   264 {
   265     int i = call_stack_depth -1;
   266     if( i >= MAX_CALLSTACK )
   267 	i = MAX_CALLSTACK - 1;
   268     for( ; i >= 0; i-- ) {
   269 	fprintf( f, "%d. Call from %08X => %08X, SP=%08X\n", 
   270 		 (call_stack_depth - i), call_stack[i].call_addr,
   271 		 call_stack[i].target_addr, call_stack[i].stack_pointer );
   272     }
   273 }
   275 #define TRACE_CALL( source, dest ) trace_call(source, dest)
   276 #define TRACE_RETURN( source, dest ) trace_return(source, dest)
   277 #else
   278 #define TRACE_CALL( dest, rts ) 
   279 #define TRACE_RETURN( source, dest )
   280 #endif
   282 #define RAISE( x, v ) do{			\
   283     if( sh4r.vbr == 0 ) { \
   284         ERROR( "%08X: VBR not initialized while raising exception %03X, halting", sh4r.pc, x ); \
   285         dreamcast_stop(); return FALSE;	\
   286     } else { \
   287         sh4r.spc = sh4r.pc;	\
   288         sh4r.ssr = sh4_read_sr(); \
   289         sh4r.sgr = sh4r.r[15]; \
   290         MMIO_WRITE(MMU,EXPEVT,x); \
   291         sh4r.pc = sh4r.vbr + v; \
   292         sh4r.new_pc = sh4r.pc + 2; \
   293         sh4_load_sr( sh4r.ssr |SR_MD|SR_BL|SR_RB ); \
   294 	if( sh4r.in_delay_slot ) { \
   295 	    sh4r.in_delay_slot = 0; \
   296 	    sh4r.spc -= 2; \
   297 	} \
   298     } \
   299     return TRUE; } while(0)
   301 #define MEM_READ_BYTE( addr ) sh4_read_byte(addr)
   302 #define MEM_READ_WORD( addr ) sh4_read_word(addr)
   303 #define MEM_READ_LONG( addr ) sh4_read_long(addr)
   304 #define MEM_WRITE_BYTE( addr, val ) sh4_write_byte(addr, val)
   305 #define MEM_WRITE_WORD( addr, val ) sh4_write_word(addr, val)
   306 #define MEM_WRITE_LONG( addr, val ) sh4_write_long(addr, val)
   308 #define FP_WIDTH (IS_FPU_DOUBLESIZE() ? 8 : 4)
   310 #define MEM_FP_READ( addr, reg ) sh4_read_float( addr, reg );
   311 #define MEM_FP_WRITE( addr, reg ) sh4_write_float( addr, reg );
   313 #define CHECKPRIV() if( !IS_SH4_PRIVMODE() ) return sh4_raise_slot_exception( EXC_ILLEGAL, EXC_SLOT_ILLEGAL )
   314 #define CHECKRALIGN16(addr) if( (addr)&0x01 ) return sh4_raise_exception( EXC_DATA_ADDR_READ )
   315 #define CHECKRALIGN32(addr) if( (addr)&0x03 ) return sh4_raise_exception( EXC_DATA_ADDR_READ )
   316 #define CHECKWALIGN16(addr) if( (addr)&0x01 ) return sh4_raise_exception( EXC_DATA_ADDR_WRITE )
   317 #define CHECKWALIGN32(addr) if( (addr)&0x03 ) return sh4_raise_exception( EXC_DATA_ADDR_WRITE )
   319 #define CHECKFPUEN() if( !IS_FPU_ENABLED() ) { if( ir == 0xFFFD ) { UNDEF(ir); } else { return sh4_raise_slot_exception( EXC_FPU_DISABLED, EXC_SLOT_FPU_DISABLED ); } }
   320 #define CHECKDEST(p) if( (p) == 0 ) { ERROR( "%08X: Branch/jump to NULL, CPU halted", sh4r.pc ); dreamcast_stop(); return FALSE; }
   321 #define CHECKSLOTILLEGAL() if(sh4r.in_delay_slot) return sh4_raise_exception(EXC_SLOT_ILLEGAL)
   323 static void sh4_switch_banks( )
   324 {
   325     uint32_t tmp[8];
   327     memcpy( tmp, sh4r.r, sizeof(uint32_t)*8 );
   328     memcpy( sh4r.r, sh4r.r_bank, sizeof(uint32_t)*8 );
   329     memcpy( sh4r.r_bank, tmp, sizeof(uint32_t)*8 );
   330 }
   332 static void sh4_load_sr( uint32_t newval )
   333 {
   334     if( (newval ^ sh4r.sr) & SR_RB )
   335         sh4_switch_banks();
   336     sh4r.sr = newval;
   337     sh4r.t = (newval&SR_T) ? 1 : 0;
   338     sh4r.s = (newval&SR_S) ? 1 : 0;
   339     sh4r.m = (newval&SR_M) ? 1 : 0;
   340     sh4r.q = (newval&SR_Q) ? 1 : 0;
   341     intc_mask_changed();
   342 }
   344 static void sh4_write_float( uint32_t addr, int reg )
   345 {
   346     if( IS_FPU_DOUBLESIZE() ) {
   347 	if( reg & 1 ) {
   348 	    sh4_write_long( addr, *((uint32_t *)&XF((reg)&0x0E)) );
   349 	    sh4_write_long( addr+4, *((uint32_t *)&XF(reg)) );
   350 	} else {
   351 	    sh4_write_long( addr, *((uint32_t *)&FR(reg)) ); 
   352 	    sh4_write_long( addr+4, *((uint32_t *)&FR((reg)|0x01)) );
   353 	}
   354     } else {
   355 	sh4_write_long( addr, *((uint32_t *)&FR((reg))) );
   356     }
   357 }
   359 static void sh4_read_float( uint32_t addr, int reg )
   360 {
   361     if( IS_FPU_DOUBLESIZE() ) {
   362 	if( reg & 1 ) {
   363 	    *((uint32_t *)&XF((reg) & 0x0E)) = sh4_read_long(addr);
   364 	    *((uint32_t *)&XF(reg)) = sh4_read_long(addr+4);
   365 	} else {
   366 	    *((uint32_t *)&FR(reg)) = sh4_read_long(addr);
   367 	    *((uint32_t *)&FR((reg) | 0x01)) = sh4_read_long(addr+4);
   368 	}
   369     } else {
   370 	*((uint32_t *)&FR(reg)) = sh4_read_long(addr);
   371     }
   372 }
   374 static uint32_t sh4_read_sr( void )
   375 {
   376     /* synchronize sh4r.sr with the various bitflags */
   377     sh4r.sr &= SR_MQSTMASK;
   378     if( sh4r.t ) sh4r.sr |= SR_T;
   379     if( sh4r.s ) sh4r.sr |= SR_S;
   380     if( sh4r.m ) sh4r.sr |= SR_M;
   381     if( sh4r.q ) sh4r.sr |= SR_Q;
   382     return sh4r.sr;
   383 }
   385 /**
   386  * Raise a general CPU exception for the specified exception code.
   387  * (NOT for TRAPA or TLB exceptions)
   388  */
   389 gboolean sh4_raise_exception( int code )
   390 {
   391     RAISE( code, EXV_EXCEPTION );
   392 }
   394 gboolean sh4_raise_slot_exception( int normal_code, int slot_code ) {
   395     if( sh4r.in_delay_slot ) {
   396 	return sh4_raise_exception(slot_code);
   397     } else {
   398 	return sh4_raise_exception(normal_code);
   399     }
   400 }
   402 gboolean sh4_raise_tlb_exception( int code )
   403 {
   404     RAISE( code, EXV_TLBMISS );
   405 }
   407 void sh4_accept_interrupt( void )
   408 {
   409     uint32_t code = intc_accept_interrupt();
   410     sh4r.ssr = sh4_read_sr();
   411     sh4r.spc = sh4r.pc;
   412     sh4r.sgr = sh4r.r[15];
   413     sh4_load_sr( sh4r.ssr|SR_BL|SR_MD|SR_RB );
   414     MMIO_WRITE( MMU, INTEVT, code );
   415     sh4r.pc = sh4r.vbr + 0x600;
   416     sh4r.new_pc = sh4r.pc + 2;
   417     //    WARN( "Accepting interrupt %03X, from %08X => %08X", code, sh4r.spc, sh4r.pc );
   418 }
   420 gboolean sh4_execute_instruction( void )
   421 {
   422     uint32_t pc;
   423     unsigned short ir;
   424     uint32_t tmp;
   425     float ftmp;
   426     double dtmp;
   428 #define R0 sh4r.r[0]
   429     pc = sh4r.pc;
   430     if( pc > 0xFFFFFF00 ) {
   431 	/* SYSCALL Magic */
   432 	syscall_invoke( pc );
   433 	sh4r.in_delay_slot = 0;
   434 	pc = sh4r.pc = sh4r.pr;
   435 	sh4r.new_pc = sh4r.pc + 2;
   436     }
   437     CHECKRALIGN16(pc);
   439     /* Read instruction */
   440     uint32_t pageaddr = pc >> 12;
   441     if( sh4_icache != NULL && pageaddr == sh4_icache_addr ) {
   442 	ir = sh4_icache[(pc&0xFFF)>>1];
   443     } else {
   444 	sh4_icache = (uint16_t *)mem_get_page(pc);
   445 	if( ((uint32_t)sh4_icache) < MAX_IO_REGIONS ) {
   446 	    /* If someone's actually been so daft as to try to execute out of an IO
   447 	     * region, fallback on the full-blown memory read
   448 	     */
   449 	    sh4_icache = NULL;
   450 	    ir = MEM_READ_WORD(pc);
   451 	} else {
   452 	    sh4_icache_addr = pageaddr;
   453 	    ir = sh4_icache[(pc&0xFFF)>>1];
   454 	}
   455     }
   456 %%
   457 AND Rm, Rn {: sh4r.r[Rn] &= sh4r.r[Rm]; :}
   458 AND #imm, R0 {: R0 &= imm; :}
   459 AND.B #imm, @(R0, GBR) {: MEM_WRITE_BYTE( R0 + sh4r.gbr, imm & MEM_READ_BYTE(R0 + sh4r.gbr) ); :}
   460 NOT Rm, Rn {: sh4r.r[Rn] = ~sh4r.r[Rm]; :}
   461 OR Rm, Rn {: sh4r.r[Rn] |= sh4r.r[Rm]; :}
   462 OR #imm, R0  {: R0 |= imm; :}
   463 OR.B #imm, @(R0, GBR) {: MEM_WRITE_BYTE( R0 + sh4r.gbr, imm | MEM_READ_BYTE(R0 + sh4r.gbr) ); :}
   464 TAS.B @Rn {:
   465     tmp = MEM_READ_BYTE( sh4r.r[Rn] );
   466     sh4r.t = ( tmp == 0 ? 1 : 0 );
   467     MEM_WRITE_BYTE( sh4r.r[Rn], tmp | 0x80 );
   468 :}
   469 TST Rm, Rn {: sh4r.t = (sh4r.r[Rn]&sh4r.r[Rm] ? 0 : 1); :}
   470 TST #imm, R0 {: sh4r.t = (R0 & imm ? 0 : 1); :}
   471 TST.B #imm, @(R0, GBR) {: sh4r.t = ( MEM_READ_BYTE(R0 + sh4r.gbr) & imm ? 0 : 1 ); :}
   472 XOR Rm, Rn {: sh4r.r[Rn] ^= sh4r.r[Rm]; :}
   473 XOR #imm, R0 {: R0 ^= imm; :}
   474 XOR.B #imm, @(R0, GBR) {: MEM_WRITE_BYTE( R0 + sh4r.gbr, imm ^ MEM_READ_BYTE(R0 + sh4r.gbr) ); :}
   475 XTRCT Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rn]>>16) | (sh4r.r[Rm]<<16); :}
   477 ROTL Rn {:
   478     sh4r.t = sh4r.r[Rn] >> 31;
   479     sh4r.r[Rn] <<= 1;
   480     sh4r.r[Rn] |= sh4r.t;
   481 :}
   482 ROTR Rn {:
   483     sh4r.t = sh4r.r[Rn] & 0x00000001;
   484     sh4r.r[Rn] >>= 1;
   485     sh4r.r[Rn] |= (sh4r.t << 31);
   486 :}
   487 ROTCL Rn {:
   488     tmp = sh4r.r[Rn] >> 31;
   489     sh4r.r[Rn] <<= 1;
   490     sh4r.r[Rn] |= sh4r.t;
   491     sh4r.t = tmp;
   492 :}
   493 ROTCR Rn {:
   494     tmp = sh4r.r[Rn] & 0x00000001;
   495     sh4r.r[Rn] >>= 1;
   496     sh4r.r[Rn] |= (sh4r.t << 31 );
   497     sh4r.t = tmp;
   498 :}
   499 SHAD Rm, Rn {:
   500     tmp = sh4r.r[Rm];
   501     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   502     else if( (tmp & 0x1F) == 0 )  
   503         sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 31;
   504     else 
   505 	sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> (((~sh4r.r[Rm]) & 0x1F)+1);
   506 :}
   507 SHLD Rm, Rn {:
   508     tmp = sh4r.r[Rm];
   509     if( (tmp & 0x80000000) == 0 ) sh4r.r[Rn] <<= (tmp&0x1f);
   510     else if( (tmp & 0x1F) == 0 ) sh4r.r[Rn] = 0;
   511     else sh4r.r[Rn] >>= (((~tmp) & 0x1F)+1);
   512 :}
   513 SHAL Rn {:
   514     sh4r.t = sh4r.r[Rn] >> 31;
   515     sh4r.r[Rn] <<= 1;
   516 :}
   517 SHAR Rn {:
   518     sh4r.t = sh4r.r[Rn] & 0x00000001;
   519     sh4r.r[Rn] = ((int32_t)sh4r.r[Rn]) >> 1;
   520 :}
   521 SHLL Rn {: sh4r.t = sh4r.r[Rn] >> 31; sh4r.r[Rn] <<= 1; :}
   522 SHLR Rn {: sh4r.t = sh4r.r[Rn] & 0x00000001; sh4r.r[Rn] >>= 1; :}
   523 SHLL2 Rn {: sh4r.r[Rn] <<= 2; :}
   524 SHLR2 Rn {: sh4r.r[Rn] >>= 2; :}
   525 SHLL8 Rn {: sh4r.r[Rn] <<= 8; :}
   526 SHLR8 Rn {: sh4r.r[Rn] >>= 8; :}
   527 SHLL16 Rn {: sh4r.r[Rn] <<= 16; :}
   528 SHLR16 Rn {: sh4r.r[Rn] >>= 16; :}
   530 EXTU.B Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x000000FF; :}
   531 EXTU.W Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]&0x0000FFFF; :}
   532 EXTS.B Rm, Rn {: sh4r.r[Rn] = SIGNEXT8( sh4r.r[Rm]&0x000000FF ); :}
   533 EXTS.W Rm, Rn {: sh4r.r[Rn] = SIGNEXT16( sh4r.r[Rm]&0x0000FFFF ); :}
   534 SWAP.B Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]&0xFFFF0000) | ((sh4r.r[Rm]&0x0000FF00)>>8) | ((sh4r.r[Rm]&0x000000FF)<<8); :}
   535 SWAP.W Rm, Rn {: sh4r.r[Rn] = (sh4r.r[Rm]>>16) | (sh4r.r[Rm]<<16); :}
   537 CLRT {: sh4r.t = 0; :}
   538 SETT {: sh4r.t = 1; :}
   539 CLRMAC {: sh4r.mac = 0; :}
   540 LDTLB {: /* TODO */ :}
   541 CLRS {: sh4r.s = 0; :}
   542 SETS {: sh4r.s = 1; :}
   543 MOVT Rn {: sh4r.r[Rn] = sh4r.t; :}
   544 NOP {: /* NOP */ :}
   546 PREF @Rn {:
   547      tmp = sh4r.r[Rn];
   548      if( (tmp & 0xFC000000) == 0xE0000000 ) {
   549 	 sh4_flush_store_queue(tmp);
   550      }
   551 :}
   552 OCBI @Rn {: :}
   553 OCBP @Rn {: :}
   554 OCBWB @Rn {: :}
   555 MOVCA.L R0, @Rn {:
   556     tmp = sh4r.r[Rn];
   557     CHECKWALIGN32(tmp);
   558     MEM_WRITE_LONG( tmp, R0 );
   559 :}
   560 MOV.B Rm, @(R0, Rn) {: MEM_WRITE_BYTE( R0 + sh4r.r[Rn], sh4r.r[Rm] ); :}
   561 MOV.W Rm, @(R0, Rn) {: 
   562     CHECKWALIGN16( R0 + sh4r.r[Rn] );
   563     MEM_WRITE_WORD( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   564 :}
   565 MOV.L Rm, @(R0, Rn) {:
   566     CHECKWALIGN32( R0 + sh4r.r[Rn] );
   567     MEM_WRITE_LONG( R0 + sh4r.r[Rn], sh4r.r[Rm] );
   568 :}
   569 MOV.B @(R0, Rm), Rn {: sh4r.r[Rn] = MEM_READ_BYTE( R0 + sh4r.r[Rm] ); :}
   570 MOV.W @(R0, Rm), Rn {: CHECKRALIGN16( R0 + sh4r.r[Rm] );
   571                     sh4r.r[Rn] = MEM_READ_WORD( R0 + sh4r.r[Rm] );
   572 :}
   573 MOV.L @(R0, Rm), Rn {: CHECKRALIGN32( R0 + sh4r.r[Rm] );
   574                     sh4r.r[Rn] = MEM_READ_LONG( R0 + sh4r.r[Rm] );
   575 :}
   576 MOV.L Rm, @(disp, Rn) {:
   577     tmp = sh4r.r[Rn] + disp;
   578     CHECKWALIGN32( tmp );
   579     MEM_WRITE_LONG( tmp, sh4r.r[Rm] );
   580 :}
   581 MOV.B Rm, @Rn {: MEM_WRITE_BYTE( sh4r.r[Rn], sh4r.r[Rm] ); :}
   582 MOV.W Rm, @Rn {: CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn], sh4r.r[Rm] ); :}
   583 MOV.L Rm, @Rn {: CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn], sh4r.r[Rm] ); :}
   584 MOV.B Rm, @-Rn {: sh4r.r[Rn] --; MEM_WRITE_BYTE( sh4r.r[Rn], sh4r.r[Rm] ); :}
   585 MOV.W Rm, @-Rn {: sh4r.r[Rn] -= 2; CHECKWALIGN16( sh4r.r[Rn] ); MEM_WRITE_WORD( sh4r.r[Rn], sh4r.r[Rm] ); :}
   586 MOV.L Rm, @-Rn {: sh4r.r[Rn] -= 4; CHECKWALIGN32( sh4r.r[Rn] ); MEM_WRITE_LONG( sh4r.r[Rn], sh4r.r[Rm] ); :}
   587 MOV.L @(disp, Rm), Rn {:
   588     tmp = sh4r.r[Rm] + disp;
   589     CHECKRALIGN32( tmp );
   590     sh4r.r[Rn] = MEM_READ_LONG( tmp );
   591 :}
   592 MOV.B @Rm, Rn {: sh4r.r[Rn] = MEM_READ_BYTE( sh4r.r[Rm] ); :}
   593 MOV.W @Rm, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); sh4r.r[Rn] = MEM_READ_WORD( sh4r.r[Rm] ); :}
   594 MOV.L @Rm, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); sh4r.r[Rn] = MEM_READ_LONG( sh4r.r[Rm] ); :}
   595 MOV Rm, Rn {: sh4r.r[Rn] = sh4r.r[Rm]; :}
   596 MOV.B @Rm+, Rn {: sh4r.r[Rn] = MEM_READ_BYTE( sh4r.r[Rm] ); sh4r.r[Rm] ++; :}
   597 MOV.W @Rm+, Rn {: CHECKRALIGN16( sh4r.r[Rm] ); sh4r.r[Rn] = MEM_READ_WORD( sh4r.r[Rm] ); sh4r.r[Rm] += 2; :}
   598 MOV.L @Rm+, Rn {: CHECKRALIGN32( sh4r.r[Rm] ); sh4r.r[Rn] = MEM_READ_LONG( sh4r.r[Rm] ); sh4r.r[Rm] += 4; :}
   599 MOV.L @(disp, PC), Rn {:
   600     CHECKSLOTILLEGAL();
   601     tmp = (pc&0xFFFFFFFC) + disp + 4;
   602     sh4r.r[Rn] = MEM_READ_LONG( tmp );
   603 :}
   604 MOV.B R0, @(disp, GBR) {: MEM_WRITE_BYTE( sh4r.gbr + disp, R0 ); :}
   605 MOV.W R0, @(disp, GBR) {:
   606     tmp = sh4r.gbr + disp;
   607     CHECKWALIGN16( tmp );
   608     MEM_WRITE_WORD( tmp, R0 );
   609 :}
   610 MOV.L R0, @(disp, GBR) {:
   611     tmp = sh4r.gbr + disp;
   612     CHECKWALIGN32( tmp );
   613     MEM_WRITE_LONG( tmp, R0 );
   614 :}
   615 MOV.B @(disp, GBR), R0 {: R0 = MEM_READ_BYTE( sh4r.gbr + disp ); :}
   616 MOV.W @(disp, GBR), R0 {: 
   617     tmp = sh4r.gbr + disp;
   618     CHECKRALIGN16( tmp );
   619     R0 = MEM_READ_WORD( tmp );
   620 :}
   621 MOV.L @(disp, GBR), R0 {:
   622     tmp = sh4r.gbr + disp;
   623     CHECKRALIGN32( tmp );
   624     R0 = MEM_READ_LONG( tmp );
   625 :}
   626 MOV.B R0, @(disp, Rn) {: MEM_WRITE_BYTE( sh4r.r[Rn] + disp, R0 ); :}
   627 MOV.W R0, @(disp, Rn) {: 
   628     tmp = sh4r.r[Rn] + disp;
   629     CHECKWALIGN16( tmp );
   630     MEM_WRITE_WORD( tmp, R0 );
   631 :}
   632 MOV.B @(disp, Rm), R0 {: R0 = MEM_READ_BYTE( sh4r.r[Rm] + disp ); :}
   633 MOV.W @(disp, Rm), R0 {: 
   634     tmp = sh4r.r[Rm] + disp;
   635     CHECKRALIGN16( tmp );
   636     R0 = MEM_READ_WORD( tmp );
   637 :}
   638 MOV.W @(disp, PC), Rn {:
   639     CHECKSLOTILLEGAL();
   640     tmp = pc + 4 + disp;
   641     sh4r.r[Rn] = MEM_READ_WORD( tmp );
   642 :}
   643 MOVA @(disp, PC), R0 {:
   644     CHECKSLOTILLEGAL();
   645     R0 = (pc&0xFFFFFFFC) + disp + 4;
   646 :}
   647 MOV #imm, Rn {:  sh4r.r[Rn] = imm; :}
   649 CMP/EQ #imm, R0 {: sh4r.t = ( R0 == imm ? 1 : 0 ); :}
   650 CMP/EQ Rm, Rn {: sh4r.t = ( sh4r.r[Rm] == sh4r.r[Rn] ? 1 : 0 ); :}
   651 CMP/GE Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   652 CMP/GT Rm, Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > ((int32_t)sh4r.r[Rm]) ? 1 : 0 ); :}
   653 CMP/HI Rm, Rn {: sh4r.t = ( sh4r.r[Rn] > sh4r.r[Rm] ? 1 : 0 ); :}
   654 CMP/HS Rm, Rn {: sh4r.t = ( sh4r.r[Rn] >= sh4r.r[Rm] ? 1 : 0 ); :}
   655 CMP/PL Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) > 0 ? 1 : 0 ); :}
   656 CMP/PZ Rn {: sh4r.t = ( ((int32_t)sh4r.r[Rn]) >= 0 ? 1 : 0 ); :}
   657 CMP/STR Rm, Rn {: 
   658     /* set T = 1 if any byte in RM & RN is the same */
   659     tmp = sh4r.r[Rm] ^ sh4r.r[Rn];
   660     sh4r.t = ((tmp&0x000000FF)==0 || (tmp&0x0000FF00)==0 ||
   661              (tmp&0x00FF0000)==0 || (tmp&0xFF000000)==0)?1:0;
   662 :}
   664 ADD Rm, Rn {: sh4r.r[Rn] += sh4r.r[Rm]; :}
   665 ADD #imm, Rn {: sh4r.r[Rn] += imm; :}
   666 ADDC Rm, Rn {:
   667     tmp = sh4r.r[Rn];
   668     sh4r.r[Rn] += sh4r.r[Rm] + sh4r.t;
   669     sh4r.t = ( sh4r.r[Rn] < tmp || (sh4r.r[Rn] == tmp && sh4r.t != 0) ? 1 : 0 );
   670 :}
   671 ADDV Rm, Rn {:
   672     tmp = sh4r.r[Rn] + sh4r.r[Rm];
   673     sh4r.t = ( (sh4r.r[Rn]>>31) == (sh4r.r[Rm]>>31) && ((sh4r.r[Rn]>>31) != (tmp>>31)) );
   674     sh4r.r[Rn] = tmp;
   675 :}
   676 DIV0U {: sh4r.m = sh4r.q = sh4r.t = 0; :}
   677 DIV0S Rm, Rn {: 
   678     sh4r.q = sh4r.r[Rn]>>31;
   679     sh4r.m = sh4r.r[Rm]>>31;
   680     sh4r.t = sh4r.q ^ sh4r.m;
   681 :}
   682 DIV1 Rm, Rn {:
   683     /* This is just from the sh4p manual with some
   684      * simplifications (someone want to check it's correct? :)
   685      * Why they couldn't just provide a real DIV instruction...
   686      */
   687     uint32_t tmp0, tmp1, tmp2, dir;
   689     dir = sh4r.q ^ sh4r.m;
   690     sh4r.q = (sh4r.r[Rn] >> 31);
   691     tmp2 = sh4r.r[Rm];
   692     sh4r.r[Rn] = (sh4r.r[Rn] << 1) | sh4r.t;
   693     tmp0 = sh4r.r[Rn];
   694     if( dir ) {
   695          sh4r.r[Rn] += tmp2;
   696          tmp1 = (sh4r.r[Rn]<tmp0 ? 1 : 0 );
   697     } else {
   698          sh4r.r[Rn] -= tmp2;
   699          tmp1 = (sh4r.r[Rn]>tmp0 ? 1 : 0 );
   700     }
   701     sh4r.q ^= sh4r.m ^ tmp1;
   702     sh4r.t = ( sh4r.q == sh4r.m ? 1 : 0 );
   703 :}
   704 DMULS.L Rm, Rn {: sh4r.mac = SIGNEXT32(sh4r.r[Rm]) * SIGNEXT32(sh4r.r[Rn]); :}
   705 DMULU.L Rm, Rn {: sh4r.mac = ((uint64_t)sh4r.r[Rm]) * ((uint64_t)sh4r.r[Rn]); :}
   706 DT Rn {:
   707     sh4r.r[Rn] --;
   708     sh4r.t = ( sh4r.r[Rn] == 0 ? 1 : 0 );
   709 :}
   710 MAC.W @Rm+, @Rn+ {:
   711     CHECKRALIGN16( sh4r.r[Rn] );
   712     CHECKRALIGN16( sh4r.r[Rm] );
   713     int32_t stmp = SIGNEXT16(MEM_READ_WORD(sh4r.r[Rn]));
   714     sh4r.r[Rn] += 2;
   715     stmp = stmp * SIGNEXT16(MEM_READ_WORD(sh4r.r[Rm]));
   716     sh4r.r[Rm] += 2;
   717     if( sh4r.s ) {
   718 	int64_t tmpl = (int64_t)((int32_t)sh4r.mac) + (int64_t)stmp;
   719 	if( tmpl > (int64_t)0x000000007FFFFFFFLL ) {
   720 	    sh4r.mac = 0x000000017FFFFFFFLL;
   721 	} else if( tmpl < (int64_t)0xFFFFFFFF80000000LL ) {
   722 	    sh4r.mac = 0x0000000180000000LL;
   723 	} else {
   724 	    sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   725 		((uint32_t)(sh4r.mac + stmp));
   726 	}
   727     } else {
   728 	sh4r.mac += SIGNEXT32(stmp);
   729     }
   730 :}
   731 MAC.L @Rm+, @Rn+ {:
   732     CHECKRALIGN32( sh4r.r[Rm] );
   733     CHECKRALIGN32( sh4r.r[Rn] );
   734     int64_t tmpl = SIGNEXT32(MEM_READ_LONG(sh4r.r[Rn]));
   735     sh4r.r[Rn] += 4;
   736     tmpl = tmpl * SIGNEXT32(MEM_READ_LONG(sh4r.r[Rm])) + sh4r.mac;
   737     sh4r.r[Rm] += 4;
   738     if( sh4r.s ) {
   739         /* 48-bit Saturation. Yuch */
   740         if( tmpl < (int64_t)0xFFFF800000000000LL )
   741             tmpl = 0xFFFF800000000000LL;
   742         else if( tmpl > (int64_t)0x00007FFFFFFFFFFFLL )
   743             tmpl = 0x00007FFFFFFFFFFFLL;
   744     }
   745     sh4r.mac = tmpl;
   746 :}
   747 MUL.L Rm, Rn {: sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   748                         (sh4r.r[Rm] * sh4r.r[Rn]); :}
   749 MULU.W Rm, Rn {:
   750     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   751                (uint32_t)((sh4r.r[Rm]&0xFFFF) * (sh4r.r[Rn]&0xFFFF));
   752 :}
   753 MULS.W Rm, Rn {:
   754     sh4r.mac = (sh4r.mac&0xFFFFFFFF00000000LL) |
   755                (uint32_t)(SIGNEXT32(sh4r.r[Rm]&0xFFFF) * SIGNEXT32(sh4r.r[Rn]&0xFFFF));
   756 :}
   757 NEGC Rm, Rn {:
   758     tmp = 0 - sh4r.r[Rm];
   759     sh4r.r[Rn] = tmp - sh4r.t;
   760     sh4r.t = ( 0<tmp || tmp<sh4r.r[Rn] ? 1 : 0 );
   761 :}
   762 NEG Rm, Rn {: sh4r.r[Rn] = 0 - sh4r.r[Rm]; :}
   763 SUB Rm, Rn {: sh4r.r[Rn] -= sh4r.r[Rm]; :}
   764 SUBC Rm, Rn {: 
   765     tmp = sh4r.r[Rn];
   766     sh4r.r[Rn] = sh4r.r[Rn] - sh4r.r[Rm] - sh4r.t;
   767     sh4r.t = (sh4r.r[Rn] > tmp || (sh4r.r[Rn] == tmp && sh4r.t == 1));
   768 :}
   770 BRAF Rn {:
   771      CHECKSLOTILLEGAL();
   772      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   773      sh4r.in_delay_slot = 1;
   774      sh4r.pc = sh4r.new_pc;
   775      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   776      return TRUE;
   777 :}
   778 BSRF Rn {:
   779      CHECKSLOTILLEGAL();
   780      CHECKDEST( pc + 4 + sh4r.r[Rn] );
   781      sh4r.in_delay_slot = 1;
   782      sh4r.pr = sh4r.pc + 4;
   783      sh4r.pc = sh4r.new_pc;
   784      sh4r.new_pc = pc + 4 + sh4r.r[Rn];
   785      TRACE_CALL( pc, sh4r.new_pc );
   786      return TRUE;
   787 :}
   788 BT disp {:
   789     CHECKSLOTILLEGAL();
   790     if( sh4r.t ) {
   791         CHECKDEST( sh4r.pc + disp + 4 )
   792         sh4r.pc += disp + 4;
   793         sh4r.new_pc = sh4r.pc + 2;
   794         return TRUE;
   795     }
   796 :}
   797 BF disp {:
   798     CHECKSLOTILLEGAL();
   799     if( !sh4r.t ) {
   800         CHECKDEST( sh4r.pc + disp + 4 )
   801         sh4r.pc += disp + 4;
   802         sh4r.new_pc = sh4r.pc + 2;
   803         return TRUE;
   804     }
   805 :}
   806 BT/S disp {:
   807     CHECKSLOTILLEGAL();
   808     if( sh4r.t ) {
   809         CHECKDEST( sh4r.pc + disp + 4 )
   810         sh4r.in_delay_slot = 1;
   811         sh4r.pc = sh4r.new_pc;
   812         sh4r.new_pc = pc + disp + 4;
   813         sh4r.in_delay_slot = 1;
   814         return TRUE;
   815     }
   816 :}
   817 BF/S disp {:
   818     CHECKSLOTILLEGAL();
   819     if( !sh4r.t ) {
   820         CHECKDEST( sh4r.pc + disp + 4 )
   821         sh4r.in_delay_slot = 1;
   822         sh4r.pc = sh4r.new_pc;
   823         sh4r.new_pc = pc + disp + 4;
   824         return TRUE;
   825     }
   826 :}
   827 BRA disp {:
   828     CHECKSLOTILLEGAL();
   829     CHECKDEST( sh4r.pc + disp + 4 );
   830     sh4r.in_delay_slot = 1;
   831     sh4r.pc = sh4r.new_pc;
   832     sh4r.new_pc = pc + 4 + disp;
   833     return TRUE;
   834 :}
   835 BSR disp {:
   836     CHECKDEST( sh4r.pc + disp + 4 );
   837     CHECKSLOTILLEGAL();
   838     sh4r.in_delay_slot = 1;
   839     sh4r.pr = pc + 4;
   840     sh4r.pc = sh4r.new_pc;
   841     sh4r.new_pc = pc + 4 + disp;
   842     TRACE_CALL( pc, sh4r.new_pc );
   843     return TRUE;
   844 :}
   845 TRAPA #imm {:
   846     CHECKSLOTILLEGAL();
   847     MMIO_WRITE( MMU, TRA, imm<<2 );
   848     sh4r.pc += 2;
   849     sh4_raise_exception( EXC_TRAP );
   850 :}
   851 RTS {: 
   852     CHECKSLOTILLEGAL();
   853     CHECKDEST( sh4r.pr );
   854     sh4r.in_delay_slot = 1;
   855     sh4r.pc = sh4r.new_pc;
   856     sh4r.new_pc = sh4r.pr;
   857     TRACE_RETURN( pc, sh4r.new_pc );
   858     return TRUE;
   859 :}
   860 SLEEP {:
   861     if( MMIO_READ( CPG, STBCR ) & 0x80 ) {
   862 	sh4r.sh4_state = SH4_STATE_STANDBY;
   863     } else {
   864 	sh4r.sh4_state = SH4_STATE_SLEEP;
   865     }
   866     return FALSE; /* Halt CPU */
   867 :}
   868 RTE {:
   869     CHECKPRIV();
   870     CHECKDEST( sh4r.spc );
   871     CHECKSLOTILLEGAL();
   872     sh4r.in_delay_slot = 1;
   873     sh4r.pc = sh4r.new_pc;
   874     sh4r.new_pc = sh4r.spc;
   875     sh4_load_sr( sh4r.ssr );
   876     return TRUE;
   877 :}
   878 JMP @Rn {:
   879     CHECKDEST( sh4r.r[Rn] );
   880     CHECKSLOTILLEGAL();
   881     sh4r.in_delay_slot = 1;
   882     sh4r.pc = sh4r.new_pc;
   883     sh4r.new_pc = sh4r.r[Rn];
   884     return TRUE;
   885 :}
   886 JSR @Rn {:
   887     CHECKDEST( sh4r.r[Rn] );
   888     CHECKSLOTILLEGAL();
   889     sh4r.in_delay_slot = 1;
   890     sh4r.pc = sh4r.new_pc;
   891     sh4r.new_pc = sh4r.r[Rn];
   892     sh4r.pr = pc + 4;
   893     TRACE_CALL( pc, sh4r.new_pc );
   894     return TRUE;
   895 :}
   896 STS MACH, Rn {: sh4r.r[Rn] = (sh4r.mac>>32); :}
   897 STS.L MACH, @-Rn {:
   898     sh4r.r[Rn] -= 4;
   899     CHECKWALIGN32( sh4r.r[Rn] );
   900     MEM_WRITE_LONG( sh4r.r[Rn], (sh4r.mac>>32) );
   901 :}
   902 STC.L SR, @-Rn {:
   903     CHECKPRIV();
   904     sh4r.r[Rn] -= 4;
   905     CHECKWALIGN32( sh4r.r[Rn] );
   906     MEM_WRITE_LONG( sh4r.r[Rn], sh4_read_sr() );
   907 :}
   908 LDS.L @Rm+, MACH {:
   909     CHECKRALIGN32( sh4r.r[Rm] );
   910     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   911                (((uint64_t)MEM_READ_LONG(sh4r.r[Rm]))<<32);
   912     sh4r.r[Rm] += 4;
   913 :}
   914 LDC.L @Rm+, SR {:
   915     CHECKSLOTILLEGAL();
   916     CHECKPRIV();
   917     CHECKWALIGN32( sh4r.r[Rm] );
   918     sh4_load_sr( MEM_READ_LONG(sh4r.r[Rm]) );
   919     sh4r.r[Rm] +=4;
   920 :}
   921 LDS Rm, MACH {:
   922     sh4r.mac = (sh4r.mac & 0x00000000FFFFFFFF) |
   923                (((uint64_t)sh4r.r[Rm])<<32);
   924 :}
   925 LDC Rm, SR {:
   926     CHECKSLOTILLEGAL();
   927     CHECKPRIV();
   928     sh4_load_sr( sh4r.r[Rm] );
   929 :}
   930 LDC Rm, SGR {:
   931     CHECKPRIV();
   932     sh4r.sgr = sh4r.r[Rm];
   933 :}
   934 LDC.L @Rm+, SGR {:
   935     CHECKPRIV();
   936     CHECKRALIGN32( sh4r.r[Rm] );
   937     sh4r.sgr = MEM_READ_LONG(sh4r.r[Rm]);
   938     sh4r.r[Rm] +=4;
   939 :}
   940 STS MACL, Rn {: sh4r.r[Rn] = (uint32_t)sh4r.mac; :}
   941 STS.L MACL, @-Rn {:
   942     sh4r.r[Rn] -= 4;
   943     CHECKWALIGN32( sh4r.r[Rn] );
   944     MEM_WRITE_LONG( sh4r.r[Rn], (uint32_t)sh4r.mac );
   945 :}
   946 STC.L GBR, @-Rn {:
   947     sh4r.r[Rn] -= 4;
   948     CHECKWALIGN32( sh4r.r[Rn] );
   949     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.gbr );
   950 :}
   951 LDS.L @Rm+, MACL {:
   952     CHECKRALIGN32( sh4r.r[Rm] );
   953     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   954                (uint64_t)((uint32_t)MEM_READ_LONG(sh4r.r[Rm]));
   955     sh4r.r[Rm] += 4;
   956 :}
   957 LDC.L @Rm+, GBR {:
   958     CHECKRALIGN32( sh4r.r[Rm] );
   959     sh4r.gbr = MEM_READ_LONG(sh4r.r[Rm]);
   960     sh4r.r[Rm] +=4;
   961 :}
   962 LDS Rm, MACL {:
   963     sh4r.mac = (sh4r.mac & 0xFFFFFFFF00000000LL) |
   964                (uint64_t)((uint32_t)(sh4r.r[Rm]));
   965 :}
   966 LDC Rm, GBR {: sh4r.gbr = sh4r.r[Rm]; :}
   967 STS PR, Rn {: sh4r.r[Rn] = sh4r.pr; :}
   968 STS.L PR, @-Rn {:
   969     sh4r.r[Rn] -= 4;
   970     CHECKWALIGN32( sh4r.r[Rn] );
   971     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.pr );
   972 :}
   973 STC.L VBR, @-Rn {:
   974     CHECKPRIV();
   975     sh4r.r[Rn] -= 4;
   976     CHECKWALIGN32( sh4r.r[Rn] );
   977     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.vbr );
   978 :}
   979 LDS.L @Rm+, PR {:
   980     CHECKRALIGN32( sh4r.r[Rm] );
   981     sh4r.pr = MEM_READ_LONG( sh4r.r[Rm] );
   982     sh4r.r[Rm] += 4;
   983 :}
   984 LDC.L @Rm+, VBR {:
   985     CHECKPRIV();
   986     CHECKRALIGN32( sh4r.r[Rm] );
   987     sh4r.vbr = MEM_READ_LONG(sh4r.r[Rm]);
   988     sh4r.r[Rm] +=4;
   989 :}
   990 LDS Rm, PR {: sh4r.pr = sh4r.r[Rm]; :}
   991 LDC Rm, VBR {:
   992     CHECKPRIV();
   993     sh4r.vbr = sh4r.r[Rm];
   994 :}
   995 STC SGR, Rn {:
   996     CHECKPRIV();
   997     sh4r.r[Rn] = sh4r.sgr;
   998 :}
   999 STC.L SGR, @-Rn {:
  1000     CHECKPRIV();
  1001     sh4r.r[Rn] -= 4;
  1002     CHECKWALIGN32( sh4r.r[Rn] );
  1003     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.sgr );
  1004 :}
  1005 STC.L SSR, @-Rn {:
  1006     CHECKPRIV();
  1007     sh4r.r[Rn] -= 4;
  1008     CHECKWALIGN32( sh4r.r[Rn] );
  1009     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.ssr );
  1010 :}
  1011 LDC.L @Rm+, SSR {:
  1012     CHECKPRIV();
  1013     CHECKRALIGN32( sh4r.r[Rm] );
  1014     sh4r.ssr = MEM_READ_LONG(sh4r.r[Rm]);
  1015     sh4r.r[Rm] +=4;
  1016 :}
  1017 LDC Rm, SSR {:
  1018     CHECKPRIV();
  1019     sh4r.ssr = sh4r.r[Rm];
  1020 :}
  1021 STC.L SPC, @-Rn {:
  1022     CHECKPRIV();
  1023     sh4r.r[Rn] -= 4;
  1024     CHECKWALIGN32( sh4r.r[Rn] );
  1025     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.spc );
  1026 :}
  1027 LDC.L @Rm+, SPC {:
  1028     CHECKPRIV();
  1029     CHECKRALIGN32( sh4r.r[Rm] );
  1030     sh4r.spc = MEM_READ_LONG(sh4r.r[Rm]);
  1031     sh4r.r[Rm] +=4;
  1032 :}
  1033 LDC Rm, SPC {:
  1034     CHECKPRIV();
  1035     sh4r.spc = sh4r.r[Rm];
  1036 :}
  1037 STS FPUL, Rn {: sh4r.r[Rn] = sh4r.fpul; :}
  1038 STS.L FPUL, @-Rn {:
  1039     sh4r.r[Rn] -= 4;
  1040     CHECKWALIGN32( sh4r.r[Rn] );
  1041     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.fpul );
  1042 :}
  1043 LDS.L @Rm+, FPUL {:
  1044     CHECKRALIGN32( sh4r.r[Rm] );
  1045     sh4r.fpul = MEM_READ_LONG(sh4r.r[Rm]);
  1046     sh4r.r[Rm] +=4;
  1047 :}
  1048 LDS Rm, FPUL {: sh4r.fpul = sh4r.r[Rm]; :}
  1049 STS FPSCR, Rn {: sh4r.r[Rn] = sh4r.fpscr; :}
  1050 STS.L FPSCR, @-Rn {:
  1051     sh4r.r[Rn] -= 4;
  1052     CHECKWALIGN32( sh4r.r[Rn] );
  1053     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.fpscr );
  1054 :}
  1055 LDS.L @Rm+, FPSCR {:
  1056     CHECKRALIGN32( sh4r.r[Rm] );
  1057     sh4r.fpscr = MEM_READ_LONG(sh4r.r[Rm]);
  1058     sh4r.r[Rm] +=4;
  1059 :}
  1060 LDS Rm, FPSCR {: sh4r.fpscr = sh4r.r[Rm]; :}
  1061 STC DBR, Rn {: CHECKPRIV(); sh4r.r[Rn] = sh4r.dbr; :}
  1062 STC.L DBR, @-Rn {:
  1063     CHECKPRIV();
  1064     sh4r.r[Rn] -= 4;
  1065     CHECKWALIGN32( sh4r.r[Rn] );
  1066     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.dbr );
  1067 :}
  1068 LDC.L @Rm+, DBR {:
  1069     CHECKPRIV();
  1070     CHECKRALIGN32( sh4r.r[Rm] );
  1071     sh4r.dbr = MEM_READ_LONG(sh4r.r[Rm]);
  1072     sh4r.r[Rm] +=4;
  1073 :}
  1074 LDC Rm, DBR {:
  1075     CHECKPRIV();
  1076     sh4r.dbr = sh4r.r[Rm];
  1077 :}
  1078 STC.L Rm_BANK, @-Rn {:
  1079     CHECKPRIV();
  1080     sh4r.r[Rn] -= 4;
  1081     CHECKWALIGN32( sh4r.r[Rn] );
  1082     MEM_WRITE_LONG( sh4r.r[Rn], sh4r.r_bank[Rm_BANK] );
  1083 :}
  1084 LDC.L @Rm+, Rn_BANK {:
  1085     CHECKPRIV();
  1086     CHECKRALIGN32( sh4r.r[Rm] );
  1087     sh4r.r_bank[Rn_BANK] = MEM_READ_LONG( sh4r.r[Rm] );
  1088     sh4r.r[Rm] += 4;
  1089 :}
  1090 LDC Rm, Rn_BANK {:
  1091     CHECKPRIV();
  1092     sh4r.r_bank[Rn_BANK] = sh4r.r[Rm];
  1093 :}
  1094 STC SR, Rn {: 
  1095     CHECKPRIV();
  1096     sh4r.r[Rn] = sh4_read_sr();
  1097 :}
  1098 STC GBR, Rn {:
  1099     CHECKPRIV();
  1100     sh4r.r[Rn] = sh4r.gbr;
  1101 :}
  1102 STC VBR, Rn {:
  1103     CHECKPRIV();
  1104     sh4r.r[Rn] = sh4r.vbr;
  1105 :}
  1106 STC SSR, Rn {:
  1107     CHECKPRIV();
  1108     sh4r.r[Rn] = sh4r.ssr;
  1109 :}
  1110 STC SPC, Rn {:
  1111     CHECKPRIV();
  1112     sh4r.r[Rn] = sh4r.spc;
  1113 :}
  1114 STC Rm_BANK, Rn {:
  1115     CHECKPRIV();
  1116     sh4r.r[Rn] = sh4r.r_bank[Rm_BANK];
  1117 :}
  1119 FADD FRm, FRn {:
  1120     CHECKFPUEN();
  1121     if( IS_FPU_DOUBLEPREC() ) {
  1122 	DR(FRn) += DR(FRm);
  1123     } else {
  1124 	FR(FRn) += FR(FRm);
  1126 :}
  1127 FSUB FRm, FRn {:
  1128     CHECKFPUEN();
  1129     if( IS_FPU_DOUBLEPREC() ) {
  1130 	DR(FRn) -= DR(FRm);
  1131     } else {
  1132 	FR(FRn) -= FR(FRm);
  1134 :}
  1136 FMUL FRm, FRn {:
  1137     CHECKFPUEN();
  1138     if( IS_FPU_DOUBLEPREC() ) {
  1139 	DR(FRn) *= DR(FRm);
  1140     } else {
  1141 	FR(FRn) *= FR(FRm);
  1143 :}
  1145 FDIV FRm, FRn {:
  1146     CHECKFPUEN();
  1147     if( IS_FPU_DOUBLEPREC() ) {
  1148 	DR(FRn) /= DR(FRm);
  1149     } else {
  1150 	FR(FRn) /= FR(FRm);
  1152 :}
  1154 FCMP/EQ FRm, FRn {:
  1155     CHECKFPUEN();
  1156     if( IS_FPU_DOUBLEPREC() ) {
  1157 	sh4r.t = ( DR(FRn) == DR(FRm) ? 1 : 0 );
  1158     } else {
  1159 	sh4r.t = ( FR(FRn) == FR(FRm) ? 1 : 0 );
  1161 :}
  1163 FCMP/GT FRm, FRn {:
  1164     CHECKFPUEN();
  1165     if( IS_FPU_DOUBLEPREC() ) {
  1166 	sh4r.t = ( DR(FRn) > DR(FRm) ? 1 : 0 );
  1167     } else {
  1168 	sh4r.t = ( FR(FRn) > FR(FRm) ? 1 : 0 );
  1170 :}
  1172 FMOV @(R0, Rm), FRn {: MEM_FP_READ( sh4r.r[Rm] + R0, FRn ); :}
  1173 FMOV FRm, @(R0, Rn) {: MEM_FP_WRITE( sh4r.r[Rn] + R0, FRm ); :}
  1174 FMOV @Rm, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); :}
  1175 FMOV @Rm+, FRn {: MEM_FP_READ( sh4r.r[Rm], FRn ); sh4r.r[Rm] += FP_WIDTH; :}
  1176 FMOV FRm, @Rn {: MEM_FP_WRITE( sh4r.r[Rn], FRm ); :}
  1177 FMOV FRm, @-Rn {: sh4r.r[Rn] -= FP_WIDTH; MEM_FP_WRITE( sh4r.r[Rn], FRm ); :}
  1178 FMOV FRm, FRn {: 
  1179     if( IS_FPU_DOUBLESIZE() )
  1180 	DR(FRn) = DR(FRm);
  1181     else
  1182 	FR(FRn) = FR(FRm);
  1183 :}
  1184 FSTS FPUL, FRn {: CHECKFPUEN(); FR(FRn) = FPULf; :}
  1185 FLDS FRm, FPUL {: CHECKFPUEN(); FPULf = FR(FRm); :}
  1186 FLOAT FPUL, FRn {: 
  1187     CHECKFPUEN();
  1188     if( IS_FPU_DOUBLEPREC() )
  1189 	DR(FRn) = (float)FPULi;
  1190     else
  1191 	FR(FRn) = (float)FPULi;
  1192 :}
  1193 FTRC FRm, FPUL {:
  1194     CHECKFPUEN();
  1195     if( IS_FPU_DOUBLEPREC() ) {
  1196         dtmp = DR(FRm);
  1197         if( dtmp >= MAX_INTF )
  1198             FPULi = MAX_INT;
  1199         else if( dtmp <= MIN_INTF )
  1200             FPULi = MIN_INT;
  1201         else 
  1202             FPULi = (int32_t)dtmp;
  1203     } else {
  1204 	ftmp = FR(FRm);
  1205 	if( ftmp >= MAX_INTF )
  1206 	    FPULi = MAX_INT;
  1207 	else if( ftmp <= MIN_INTF )
  1208 	    FPULi = MIN_INT;
  1209 	else
  1210 	    FPULi = (int32_t)ftmp;
  1212 :}
  1213 FNEG FRn {:
  1214     CHECKFPUEN();
  1215     if( IS_FPU_DOUBLEPREC() ) {
  1216 	DR(FRn) = -DR(FRn);
  1217     } else {
  1218         FR(FRn) = -FR(FRn);
  1220 :}
  1221 FABS FRn {:
  1222     CHECKFPUEN();
  1223     if( IS_FPU_DOUBLEPREC() ) {
  1224 	DR(FRn) = fabs(DR(FRn));
  1225     } else {
  1226         FR(FRn) = fabsf(FR(FRn));
  1228 :}
  1229 FSQRT FRn {:
  1230     CHECKFPUEN();
  1231     if( IS_FPU_DOUBLEPREC() ) {
  1232 	DR(FRn) = sqrt(DR(FRn));
  1233     } else {
  1234         FR(FRn) = sqrtf(FR(FRn));
  1236 :}
  1237 FLDI0 FRn {:
  1238     CHECKFPUEN();
  1239     if( IS_FPU_DOUBLEPREC() ) {
  1240 	DR(FRn) = 0.0;
  1241     } else {
  1242         FR(FRn) = 0.0;
  1244 :}
  1245 FLDI1 FRn {:
  1246     CHECKFPUEN();
  1247     if( IS_FPU_DOUBLEPREC() ) {
  1248 	DR(FRn) = 1.0;
  1249     } else {
  1250         FR(FRn) = 1.0;
  1252 :}
  1253 FMAC FR0, FRm, FRn {:
  1254     CHECKFPUEN();
  1255     if( IS_FPU_DOUBLEPREC() ) {
  1256         DR(FRn) += DR(FRm)*DR(0);
  1257     } else {
  1258 	FR(FRn) += FR(FRm)*FR(0);
  1260 :}
  1261 FRCHG {: CHECKFPUEN(); sh4r.fpscr ^= FPSCR_FR; :}
  1262 FSCHG {: CHECKFPUEN(); sh4r.fpscr ^= FPSCR_SZ; :}
  1263 FCNVSD FPUL, FRn {:
  1264     CHECKFPUEN();
  1265     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1266 	DR(FRn) = (double)FPULf;
  1268 :}
  1269 FCNVDS FRm, FPUL {:
  1270     CHECKFPUEN();
  1271     if( IS_FPU_DOUBLEPREC() && !IS_FPU_DOUBLESIZE() ) {
  1272 	FPULf = (float)DR(FRm);
  1274 :}
  1276 FSRRA FRn {:
  1277     CHECKFPUEN();
  1278     if( !IS_FPU_DOUBLEPREC() ) {
  1279 	FR(FRn) = 1.0/sqrtf(FR(FRn));
  1281 :}
  1282 FIPR FVm, FVn {:
  1283     CHECKFPUEN();
  1284     if( !IS_FPU_DOUBLEPREC() ) {
  1285         int tmp2 = FVn<<2;
  1286         tmp = FVm<<2;
  1287         FR(tmp2+3) = FR(tmp)*FR(tmp2) +
  1288             FR(tmp+1)*FR(tmp2+1) +
  1289             FR(tmp+2)*FR(tmp2+2) +
  1290             FR(tmp+3)*FR(tmp2+3);
  1292 :}
  1293 FSCA FPUL, FRn {:
  1294     CHECKFPUEN();
  1295     if( !IS_FPU_DOUBLEPREC() ) {
  1296         float angle = (((float)(FPULi&0xFFFF))/65536.0) * 2 * M_PI;
  1297         FR(FRn) = sinf(angle);
  1298         FR((FRn)+1) = cosf(angle);
  1300 :}
  1301 FTRV XMTRX, FVn {:
  1302     CHECKFPUEN();
  1303     if( !IS_FPU_DOUBLEPREC() ) {
  1304         tmp = FVn<<2;
  1305         float fv[4] = { FR(tmp), FR(tmp+1), FR(tmp+2), FR(tmp+3) };
  1306         FR(tmp) = XF(0) * fv[0] + XF(4)*fv[1] +
  1307 	    XF(8)*fv[2] + XF(12)*fv[3];
  1308         FR(tmp+1) = XF(1) * fv[0] + XF(5)*fv[1] +
  1309 	    XF(9)*fv[2] + XF(13)*fv[3];
  1310         FR(tmp+2) = XF(2) * fv[0] + XF(6)*fv[1] +
  1311 	    XF(10)*fv[2] + XF(14)*fv[3];
  1312         FR(tmp+3) = XF(3) * fv[0] + XF(7)*fv[1] +
  1313 	    XF(11)*fv[2] + XF(15)*fv[3];
  1315 :}
  1316 UNDEF {:
  1317     UNDEF(ir);
  1318 :}
  1319 %%
  1320     sh4r.pc = sh4r.new_pc;
  1321     sh4r.new_pc += 2;
  1322     sh4r.in_delay_slot = 0;
  1323     return TRUE;
.